

4th Coatings and Interfaces Online Conference

21-23 May 2025 | Online

Formation and microstructural characterization of copper oxide thin films

Haruto Shimada, Takeo Oku

SHIGA PREFECTURE The University of Shiga Prefecture

INTRODUCTION & AIM

Renewable energy

- Increase of energy demand \rightarrow Utilization of new energy
- ex.) Solar, wind, hydro, geothermal, biomass
- \rightarrow Research on **solar cells** is especially active.

Solar cells

Perovskite (Organic-inorganic hybrid crystal)
 Flexible structure, high conversion efficiencies
 Cons. Low stability • High cost

CuO device

RESULTS & DISCUSSION

Microstructures

- Observation of strong XRD peaks derived from CuO
- •MgCu₂O₃-derived peak around 36.8°

Surface morphology observation

- Decrease in void area due to two deposition operations
- CuO: Flower-shaped crystals with spreading pillar structure
- Confirmation that photoelectric conversion is possible upon light irradiation (Current density-voltage measurements)
- \Rightarrow Spin-coating and annealing twice each are necessary

- Highly stable crystal and lower toxicity
- Complex deposition methods
 High temperature annealing
 Improvement of electrical properties by doping elements

Aim

CuO thin films were fabricated using a simple spincoating method, which will help in their application to solar cells.

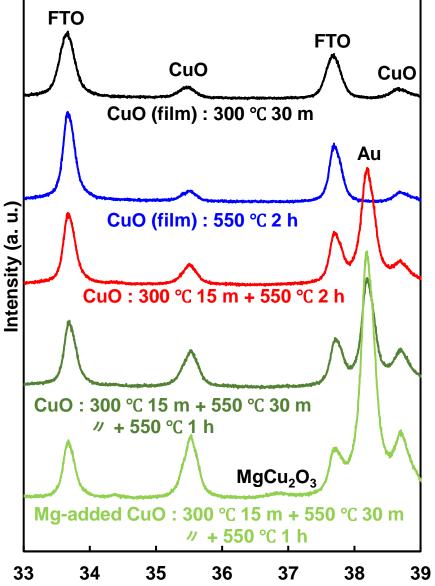
METHOD

Solutions

- **Compact TiO₂** precursor solution : Ti diisopropoxide bis (acetyl acetonate) and 1-butanol were mixed.
- **Mesoporous TiO₂** precursor solution : Mainly, it was prepared by mixing titanium oxide powder with pure water.
- **CuO** precursor solution : $CuCl_2$ was dissolved in pure water and then mixed with a surfactant.
- **Mg-added CuO** precursor solution : $CuCl_2$ and $MgCl_2$ were mixed with CuO solution at their desirable concentrations.

Fabrications

- 1. Compact TiO₂ solution was spin-coated and dried twice on a cleaned FTO substrate and annealed.
- 2. Mesoporous TiO_2 solution was spin-coated and annealed.

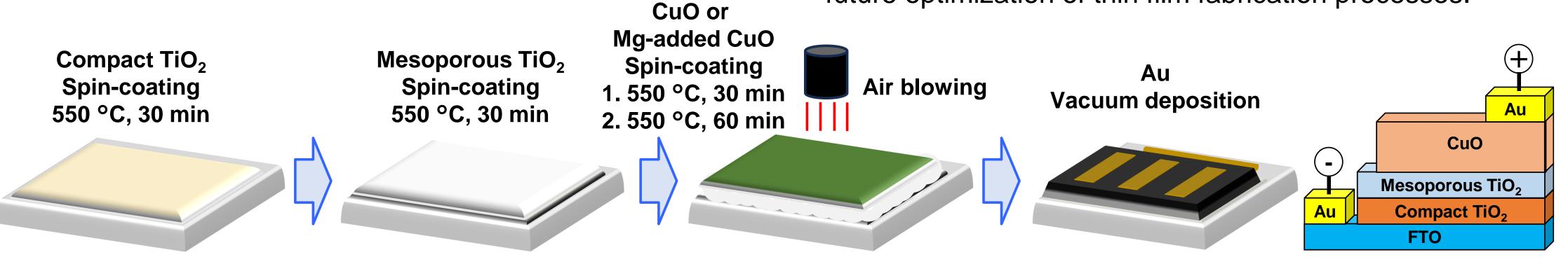

for uniform thin film formation.

CuO Optical microscopy Ist Optical microscopy Mg-added CuO Ist Opti

CONCLUSION

- Copper oxide thin films were successfully deposited using a spin-coating method.
- CuO-derived peaks were observed in the fabricated thin

X-ray diffraction



- 3. CuO solution was spin-coated and annealed under various conditions such as spin-coating times, annealing temperature and time.
- 4. Gold (Au) was deposited for the device electrode.

films, indicating that spin-coating and annealing twice is effective for achieving uniform film formation.

→ The spin-coated CuO thin films demonstrated potential for application in solar cells and provided a foundation for future optimization of thin film fabrication processes.

