

Advanced Protective Epoxy Coatings with Photoactive TiO₂-LDO Nanofillers

for Corrosion Protection and Potential NOx mitigation

Muhammad Ahsan Iqbal¹, Humaira Asghar², Valter Maurino², Endzhe Matykina¹, Raúl Arrabal¹, Marta Mohedano¹

¹Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain

²⁾Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy

Highlights

- \Box TiO₂ under UV facilitates NOx abatement, but it also releases NO₂ (byproduct) during NOx photocatalysis, Thus posing environmental risks.
- in coating systems.
- \Box Epoxy/LDO–TiO₂ composite offers \longrightarrow Excellent UV resistance properties.
- \Box Coating performance and barrier integrity remain \longrightarrow unaffected.
- □ Suitable for durable, eco-friendly outdoor applications.
- \succ Aim: Develop an epoxy coating with TiO₂-ZnAI LDO nanofillers to improve UV resistance of epoxy systems, and enable NOx mitigation

under UV exposure for durable, sustainable applications.

Synthesis and Methods

- Synthesis: TiO₂-LDO nanocatalyst (TiO₂:ZnAl = 1:10) prepared via wet impregnation, and advanced in NOx abatement compared to pure TiO_2 (Figure 1).
- Formulation: 2 wt.% TiO₂-LDO incorporated into epoxy resin.
- ✤ Application: Coatings applied on AA2024 substrates via bar coater (final thickness ~20) \pm 2 μ m).
- Photocatalysis Testing: Performed under continuous NO flow in a custom-built reactor (20 W/m², λ = 365 nm).
- Corrosion Testing: Electrochemical Impedance Spectroscopy (EIS) for 28 days; UVageing for 10 days using fluorescent UV source.
- Physical and electrochemical characterisation included scanning electron microscopy (SEM), X-ray diffraction (XRD), BET specific surface area analysis, and impedance analysis after UV ageing (10 days).

\checkmark	Decrease NO ₂ generation
\checkmark	NO/NOx photodegradation
 1	

Breakthrough: NO₂ reduction by TiO₂-LDO was quantitatively confirmed using a portable novel NOx analyser, demonstrating safer UV-resistant and thus photocatalytic performance.

	•		

Figure 1: XRD

Table 1: NOx abatement
comparison of selected
TiO ₂ nanomaterials, from
(Figure 2).

Catalyst	(%)	NO ₂ Formation (%)
TiO ₂ (anatase)	~80	20–25
ZnAI-LDO	25–30	<5
TiO ₂ -LDO (1:10)	~80	3–4

Results

- □ EIS results after 28 days- and- after 10-day UV exposure:
 - Pure epoxy exhibited visible micropore formation and impedance drop (Figure 3).
 - \Box TiO₂-LDO based epoxy system maintained barrier integrity and higher impedance, indicating UV resistance and reduced photodegradation.
- \Box The embedded TiO₂-LDO acted as a UV shield and helped preserve coating performance under light exposure (Figure 2, 3).
- \Box NOx mitigation is improved and more significantly with only 3-4 % NO₂ release (byproduct), compared to 10-25% for TiO₂.

Figure 2: NO conversion profile during the photodegradation of gaseous NO under light irradiation (Wm⁻²⁾ of pure TiO_2 (anatase).

Conclusions

\checkmark TiO₂-LDO nanofiller offers dual functionality:

- \checkmark Acts as a photoactive catalyst for NOx mitigation, with minimal NO₂ generation (3-4%).
- ✓ Enhances UV stability and corrosion resistance in epoxy coatings- potential to redesign the Epoxy base System for UV-resistant systems.
- \checkmark The developed environmentally friendly Epoxy–TiO₂-LDO composite is a promising solution for UV-resistant protective coatings in environmental and structural applications, especially in UV-exposed environments.

