

Surface engineering of Ti6AI4V alloys by bioactive coatings M.C. Uvida^{1,*}, M.E. Lombardo², S.R. Fernandez², D. Mantovani², P. Hammer¹ ¹São Paulo State University, Araraquara, SP, Brazil; ²Laval University, Quebec, QC, Canada *e-mail: <u>mayara.uvida@unesp.br</u> MDPI coatings

titanium alloys using **multifunctional barrier** coatings containing bioactive and bactericidal compounds

- PMMA-silica coating: Reduces ion release (Al and V) and improves corrosion resistance
- **Hydroxyapatite and \beta-tricalcium phosphate:** Mimics bone composition, promotes enhanced bioactivity and biocompatibility

Silver phosphate: Prevents infection

CONCLUSIONS

- with excellent Coatings anticorrosion protection in SBF (Simulated Body Fluid)
- HA, β -TCP and Ag₃PO₄ promoted cell proliferation and osteogenic expression (Alkaline phosphatase \uparrow 86.6%)
 - Bioactivity confirmed by apatite deposits
 - Effective antibacterial and antibiofilm activity

against E. coli and S. aureus

- Synergy between additive was essential for the multifunctional properties
- Promising coatings for Ti6Al4V implants

7 to 14 days: Increase in alkaline phosphatase (ALP) activity compared to controls Biomarker of bone formation

**** ****

PMMA-silica-SPTCP-A93POA

PMMA-silica-100TCP-A93POA

**** ****

activity (IU L⁻¹) ⁰⁰⁰ ⁰

ALP

200 -

PMMA-silica-10HA-Ag₃PO

PMMA-silica-10βTCP-Ag₃PO₄ Energy (eV) Reduction in bacterial growth of up to 97% compared to uncoated Ti6Al4V growth 800

ACKNOWLEDGMENTS

