The 2nd International Electronic Conference on Entomology 19–21 May 2025 | Online

Butterfly as Pollinator

Plant signal: olfactory/visual

Reward as nectar

Visit Next time

Pollination ecology of butterflies in tropical plants of Western Ghats of India

Pratiksha Mestry*¹, Shivani Kulkarni², Tejaswini Pachpor³, Ankur Patwardhan^{1,2}

¹Research and Action in Natural Wealth Administration (RANWA), 16 Swastishree Society, Ganeshnagar, Kothrud, Pune - 411052, Maharashtra, India.

²Annasaheb Kulkarni Department of Biodiversity, M.E.S. Abasaheb Garware College, Pune-411004, Maharashtra, India

³Department of Bioscience and Technology, Dr Vishwanath Karad's MIT World Peace University, Pune-411038, Maharashtra, India

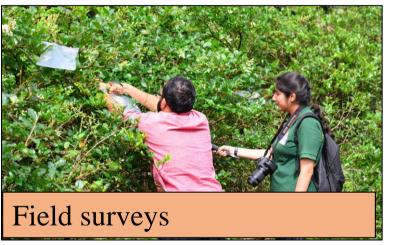
Introduction:

- Butterflies are good indicators of climate change, their role in pollination remains underexplored
- Pollinator visits to flowers are guided by various factors such as nectar, colour, pollen, etc.
- Nearly 90% of flowering plants animal-pollinated, 75 % of the world's food crops insect-pollinated
- Plant pollinators 56% (bees and wasps), 11% (butterflies and moths), 10% (flies),

3% (beetles), 12% (birds), and 8% (wind-pollinated) (Sanchez, 2019).

Objectives:

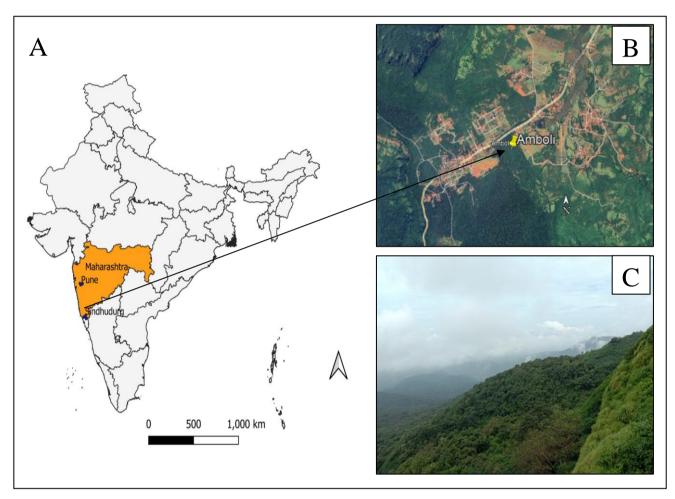
Study Area:


- 1. To document the butterfly visitors of all the plant species that are encountered •
- 2. To study the pollen morphology of flowering species that are visited by butterflies
- 3. To study the Standing Nectar Crop of all the plant species

Location – Northern Western Ghat (Global Biodiversity Hotspots)

Approach:

- Baseline survey for the selection of plant species
- Documentation of floral visitors
- Identification of plants for the detailed study
- Nectar collection by specific time intervals


Methodology: Field surveys, butterfly documentation, nectar collection, pollen grain collection, Scanning Electron Microscopy (SEM).

A. India Map; B. Study Area; C. Evergreen Forests of Amboli

Area – Amboli in Sindhudurg District, Maharashtra, India

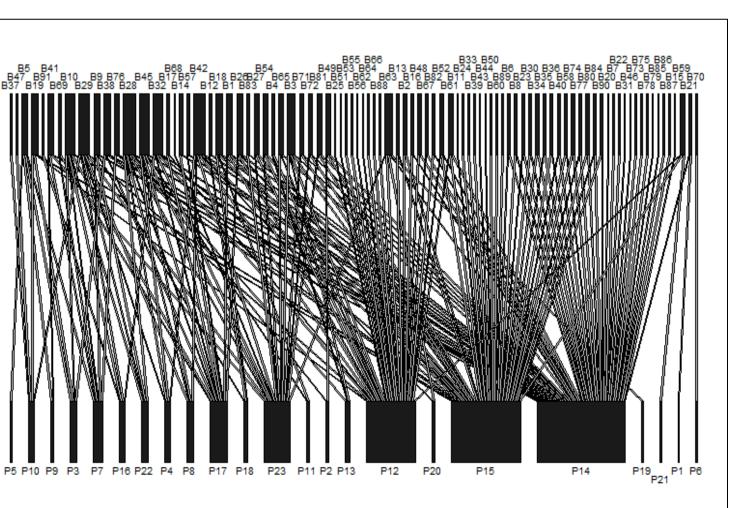

Findings: 23 Plant species were encountered, which recorded more than 91 butterfly visitors.

Fig 1. Butterfly diversity across Families

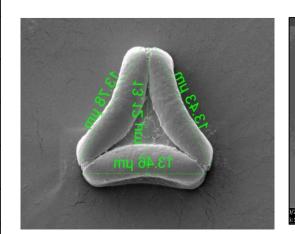
Table 1. Top 10 plant species with the highest number of butterfly visitors

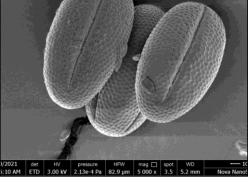
Sr.	Plant name	No. of Butterfly
No.		Visitors
1	Ligustrum robustum subsp. Perrottetii	56
2	Mappia nimmoniana	44
3	Leea indica	31
4	Wendlandia thyrsoidea	16
5	Persicaria chinensis	11
6	Clerodendrum infortunatum	6
7	Cynarospermum asperrimum	4
8	Psydrax diococcus	4
9	Crotalaria retusa	4
10	Hygrophila serpyllum	4

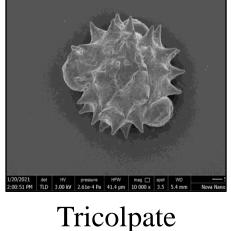
Fig 2. Bipartite Network for plants and butterfly visitors

35
Per 30
25
20
15
10
Nymphalidae Lycaenidae Hesperiidae Papilionidae Peiridae
Butterfly Family

Table 3. Top 10 species with maximum nectar


quantity			
Sr. No.	Plant Species	Avg. nectar per flower (μl)	
1	Syzygium hemisphericum	13.7	
2	Justicia santapaui	10.06	
3	Catunaregum spinosa	9.34	
4	Crotalaria retusa	8.4	
5	Carissa spinarum	4.27	
6	Syzygium zeylanicum	2.014	
7	Eranthemum roseum	1.87	
8	Mappia nimmoniana	1.37	
9	Clerodendrum infortunatum	1.36	
10	Psydrax dicoccos	1.27	


Table 2. Floral attributes of plant species studied


Flower I	Total No. of species	
Floral	Actinomorphic	15
Symmetry	Zygomorphic	8
	Brush or Head	4
	Dish to Bowl	6
Floral type	Flag	1
	Gullet	6
	Tube	6
Sayual Organs	Exposed	17
Sexual Organs	Concealed	6
	Blue	4
	Bluish white	1
	Orange	1
Flower colour	Pink	1
1 Tower colour	White	13
	White & Yellow	1
	Yellow	1
	Yellowish green	1

Pollen morphology: 12 species showed a monad dispersal unit. Triaperturate pollens were the most common type, with a tricolpate aperture condition

Fig 3. Representative pollen grain structure

Monad dispersal Triaperturate pollen unit

D 1

condition