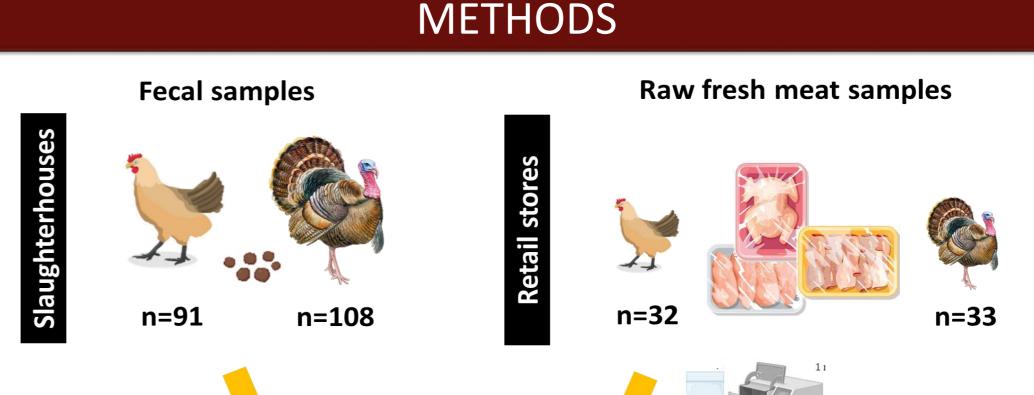


The 4th International Electronic Conference on Antibiotics

21-23 May 2025 | Online

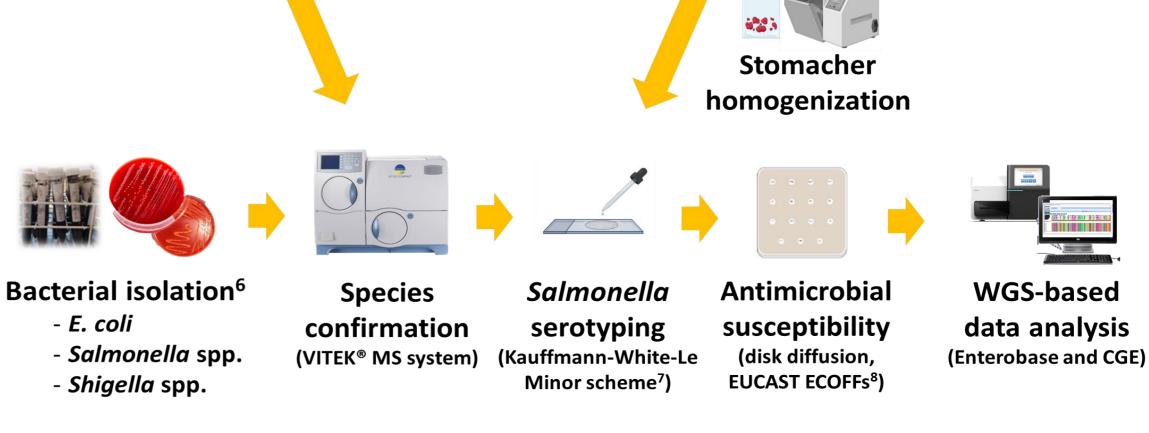
Characterisation of Resistant Enteric Bacteria Isolated from Poultry Faeces and Meat in Portugal -Is there a Risk to Public Health?


Mariana Borges¹, Margarida Martins¹, Alexandra Nunes^{2,3,4}, Sónia Ramos^{3,4}, Isabel Santos^{3,4}, Mariana Camoesas Silva^{3,4}, Adriana Belas^{3,4}, Ana Lima^{3,4}, Laurentina Pedroso^{3,4}, João Paulo Gomes^{2,3,4}, Leonor Silveira¹, <u>Ângela Pista¹</u>

¹, National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal

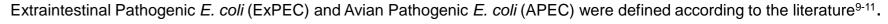
- ², Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- ³, Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon University Centre, Lisbon, Portugal
- ⁴, I-MVET, Research in Veterinary Medicine, Faculty of Veterinary Medicine, Lusófona University, Lisbon University Centre, Lisbon, Portugal

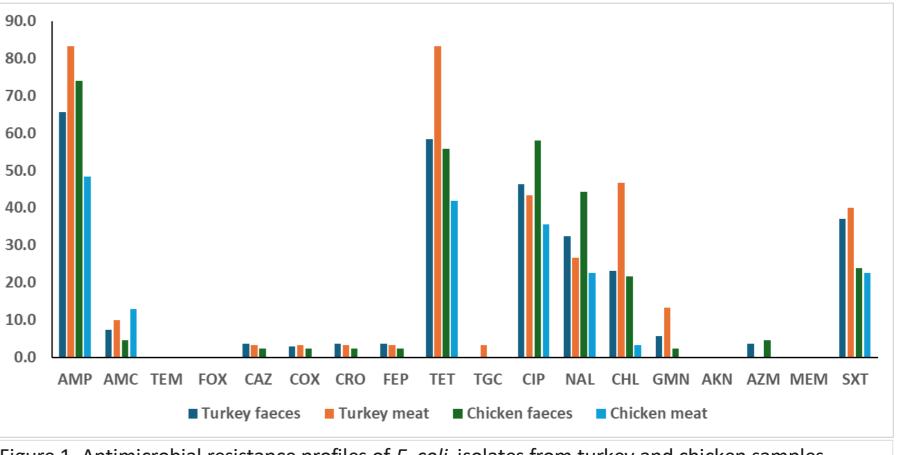
INTRODUCTION & OBJECTIVE


- Foodborne diseases caused by resistant and multidrug-resistant (MDR) bacteria are a growing public health concern.
- Food-producing animals represent a significant public health concern, with contamination of meat products occurring at multiple stages along the food production chain, particularly in slaughterhouses and meat-cutting facilities¹⁻³.
- Antimicrobial resistance in these pathogens increases the risk to both

MDP

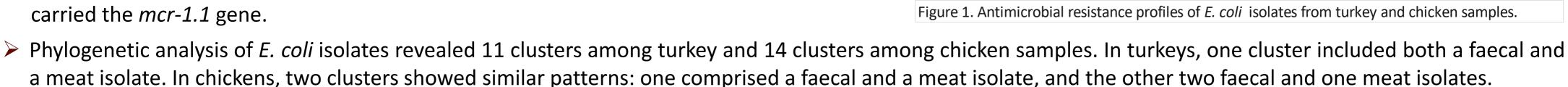
- human and animal health^{3,4}.
- While Escherichia coli (E. coli) and Salmonella spp. are well-established agents in such infections, the occurrence of Shigella spp. in poultry remains poorly understood and warrants further investigation⁵.
- The aim of this study was to identify and to characterize *E. coli, Salmonella* spp., and *Shigella* spp. isolated from turkeys and chickens of Portuguese origin produced for human consumption.




RESULTS

- No cases of Shigella spp. were detected in the 264 studied samples.
- > Salmonella spp. (S. Newport) was isolated in one turkey faecal sample (0.9%) (Table 1).
- Overall, E. coli was recovered from 97.5% faeces and 92.3% meat samples.
- Virulence genes of enteropathogenic E. coli (EPEC), ExPEC and APEC were identified in both animals (Table 1).
- > S. Newport was susceptible to all tested antibiotics.
- For E. coli, 78.1% faecal (74.1% in turkeys; 83.0% in chickens) and 78.7% (90.0% in turkeys; 67.7% in chickens) meat isolates were resistant to at least one antibiotic (Figure 1).
- > The most common resistances were to ampicillin, tetracycline, and ciprofloxacin (Figure 1).
- All isolates were susceptible to meropenem, cefoxitin, amikacin and temocillin (Figure 1).
- A MDR profile was observed in 58.6% isolates (56.5% in turkeys; 61.7% from chickens), corresponding to 59.1% isolates from faeces and 56.8% from meat samples.
- Seven E. coli isolates (four from turkey faeces, one from turkey meat, and two from chicken faeces samples) were identified as extended-spectrum beta-lactamase (ESBL) producers

Table 1. Isolation and characterisation of <i>E. coli</i> and <i>Salmonella</i> spp. in the


	1		key	Chicken		Total
No. of Tested Samples		Faeces	Meat	Faeces	Meat	IULA
		108	33	91	32	264
Salmonella isolates	Total (% +ve)	1 (0.9)	0	0	0	1 (0.4)
<i>E. coli</i> isolates	Total (% +ve)	108 (100)	30 (90.9)	86 (94.5)	30 (93.8)	254 (96.2)
	EPEC (% +ve)	1 (0.9)	0	8 (9.3)	1 (3.3)	10 (3.9)
	ExPEC (% +ve)	107 (99.1)	30 (100)	78 (90.7)	29 (96.7)	244 (96.1)
	APEC (% +ve)	33 (30.6)	10 (33.3)	19 (22.1)	18 (60.0)	80 (31.5)

(*bla*CTXM-15, *bla*CTX-M-55 and *bla*SHV-12).

Eight isolates from turkeys (seven isolates from faeces and one isolate from meat samples) carried the mcr-1.1 gene.

> S. Newport clustered with a national environmental isolate from Enterobase.

CONCLUSIONS

This study highlights the role of poultry slaughtered for human consumption and poultry meat as potential sources of human contamination with pathogenic and/or MDR isolates, and the importance of a One Health approach to ensure food safety and to promote public health.

REFERENCES

¹. Ma, S., *et al., Foodborne Pathog. Dis.* 2017, 14,667-677; ². Lauteri, C., *et al., Ital. J. Food Saf.* 2022, 11,9980; ³. Roasto, M., *et al., Trends in Food Science & Technology* 2023, 131,210-219; ⁴. Wang, Y., *et al., Lancet Infect. Dis.* 2020, 20,1161-1171; ⁵. Li, M., *et al.*, Antibiotics 2021, 10,1274; ⁶. ISO7218:2007. ISO:Geneva, Switzerland, 2007; ⁷. Grimont, P.D. & Weill, F.X., *Antigenic Formulae of the Salmonella Serovars* 2007, 9th ed., WHO Collaborating Centre for Reference and Research on *Salmonella*, Institut Pauster; ⁸. EUCAST, *Breakpoint tables for interpretation of MICs and zone diameters*, version 14.0, 2024; ⁹. Sora, V.M., *et al., Pathogens* 2021, 10,1355; ¹⁰. Johnson, T.J. *et al., J. Clin. Microbiol.* 2008, 46,3987-3996; ¹¹. Solá-Ginés, M. *et al., PLoS One* 2015, 10,e0143191.

ACKNOWLEDGEMENTS

This work was developed under the project "ResisCampyOH", funded by the Faculty of Veterinary Medicine from Lusófona University (FMV-ULusófona) in 2022-2023.