

Synthesis and biological evaluation of new amino-alcoholquinolines in response to non-tuberculous mycobacteria infections

<u>Élise Charrier^{a,b}, François Peltier^a, Alexandra Dassonville-Klimpt^a, Claire Andréjak^{a,b}, Pascal Sonnet^a.</u> ^aAGents Infectieux, Résistance et chimiothérapie, UR 4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France ^bService de pneumologie, CHU Amiens Picardie, 80054, Amiens, France

Context

Mycobacterium tuberculosis (M. tb) was responsible for 10.8 million infections and 1.25 million deaths worldwide in 2023 [1]. In Europe and North America, the incidence of infections with non-tuberculous mycobacteria (NTM) exceeds that of *M. tb*. [2]. NTM are predominantly found in pulmonary infections of patients with chronic obstructive pulmonary disease or bronchiectasis (Figure 1).

			Treatment issues fo	or NTM infections	
	Non-tuberculous mycobacteria (NTM)		Guidelines-based therapy (GBT)	Long treatment	
Sick Healthy	 Ubiquitous, opportunistics 190 species 		Macrolides: clarithromycin (CLR), azithromycin (AZI) + rifampicin (RIF) + ethambutol (EMB) (+ Aminosides in severe cases)	12 months after culture conversion	
	 BINING With pulmonary pathogenecity: M. avium complex (MAC), M. abscessus complex, M. xenopi, M. kansasii, M. malmoense and M. szulagi 		Moderate efficacy & side effects ✓ 52-60% cure rate (MAC)	 Macrolides resistance ✓ 11% of MAC strains 	

Present and future antimycobacterial quinolines

The quinoline pharmacophore is found in the structure of **bedaquiline** and **mefloquine** (MQ), which have antimycobacterial properties. The minimum inhibitory concentration (MIC) of MQ on M. abscessus (M. abs) and MAC is between 32 and 4 μ g/mL (Figure 2). However, it has a low selectivity index (SI) due to its cytotoxicity. Our team designed and synthesized amino-alcohol-quinolines (AAQs), analogues of MQ, to improve efficacity and tolerance of this class compound against NTM. A hit A was identified with a SI higher than that of MQ by a factor of 73. To further increase the SI and to establish new structure activity or toxicity relationships (SAR/STR), the secondary amine of hit A was replaced by a piperazine or an amide group. The alkyl chain was retained or was modified by an aryl group.

MIC = 4 μ g/mL (*M. abs*), 1 μ g/mL (MAC)

Conception of novel AAQs (Series I-III)

R: CF_3 ou H, R_1 : alkyl or aryl group

(*R*)-**32a**/(*S*)-**32b 30**:

2

(S)-**28b**: 89%

(R)-28a: 72%

Global yields: 1-6%

Series III: 31-32

Scheme 1: Asymmetric synthesis of series I-III.

Biological results

The antimycobacterial activity of the final compounds were evaluated on two fast-growing NTMs and three slow-growing NTMs (Table 1). Compounds of series I are the most promising since the majority of them have MICs \leq 32 µg/mL. AAQs 17-18 with a long alkyl chain (n = 5 or 6) are more effective than those with a short aliphatic chain 15-16 (n = 3 or 4). Generally, AAQs 15-23 are as active or more active than MQ, and less active than **ciprofloxacin** (CIP) and CLR except on *M. kansasii* and *M. abscessus* respectively. Compounds in the 31-32 amide series have not yet been tested on NTMs. Cell viability on HepG2 cells revealed that (R)-AAQs are less toxic than (S)-enantiomers and most often less toxic than reference antibiotics. The SI of AAQs on M. avium are lower than that of hit A (SI = 29.3), CLR and CIP. However, the SI of AAQ 15-23 are higher than that of MQ. Of the two compounds with the highest SI on M. avium, the least cytotoxic compound (R)-17a was selected to investigate a possible synergy of action.

<u>Table 1</u>: *In vitro* antimycobacterial activities and cell viability of synthetized AAQs.

	MIC (μg/mL) ^a						CI
Composed	Fast-growing NTMs		Slow-growing NTMs			CC ₅₀ (μg/mL)~	51
	M. abs R	M. abs S	M. marinum	M. avium	M. kansasii	HepG2	M. avium
(<i>R</i>)- 15 a	32	64	16	32	4	23.3 ± 2.1	0.7
(S)- 15b	64	64	8	64	≤ 2	27.0 ± 2.8	0.4
(<i>R</i>)- 16a	32	32	16	32	≤ 2	32.7 ± 3.0	1.0
(S)- 16b	32	32	8	8	≤ 2	18.2 ± 6.1	2.3
(<i>R</i>)- 17a	16	8	8	8	≤ 2	46.0 ± 0.5	5.8
(S)- 17b	16	16	4	8	≤ 2	12.5 ± 0.3	3.1
(<i>R</i>)- 18a	4	4	8	16	≤ 2	20.1 ± 1.8	5.0
(S)- 18b	4	8	≤ 2	4	≤ 2	16.5 ± 2.9	8.3
(<i>R</i>)- 23 a	8	16	4	32	4	22.9 ± 1.2	0.7
(S)- 23b	32	> 128	4	8	≤ 2	18.8 ± 1.6	2.3
(<i>R</i>)- 24a	> 64	> 64	16	> 128	8	43.4 ± 2.0	< 0.3
(S)- 24b	> 64	> 64	32	> 128	≤ 2	24.0 ± 0.04	< 0.2
(<i>R</i>)- 25 a	> 64	> 64	16	> 128	NA ^d	24.4 ± 0.3	< 0.2
(S)- 25b	> 128	> 128	16	≥ 32	≤ 2	11.3 ± 0.9	≤ 0.4
(<i>R</i>)- 26a	> 64	> 64	16	> 128	NA ^d	46.2 ± 0.5	< 0.4
(S)- 26b	> 128	> 128	> 128	> 128	≤ 2	10.0 ± 0.7	< 0.1
MQ	32	16-32	4	≤ 2	≤ 2	3.6 ± 0.2	0.4
CLR	≥ 32	≥ 32	0.25	0.25	≤ 2	2.6 ± 0.6	10.4
CIP	4	4	2	≤ 2	2	18.4 ± 1.4	≥ 9.2

Checkerboard assay against *M. avium*

In order to improve the antimycobacterial activity of (R)-17a hit compound, to reduce toxicity and to limit the risk of resistance development, the search for in vitro synergy of action carried out. Antibiotics of the GBT such as CLR, ethambutol (EMB) and rifampicin (RIF) tested with (R)-17a on the M. avium ATCC 700898 strain using the checkerboard method (Table 2).

Table 2: FICI calculation for EMB/CLR, (R)-17a/EMB, (R)-17a/CLR and (R)-17a/RIF associations.

	Antibiotic associations	MIC (μg/mL) ATCC) on <i>M. avium</i> 700898		Effect	
		Alone antibiotic	Antibiotic associations	FICI		
-	CLR / EMB	0.12 / 4	0.06 / 4	1.5		
>	(<i>R</i>)- 17 a / CLR	16 / 0.5	8/0.25	1	Additive	
	(<i>R</i>)- 17 a / EMB	4/2	4/1	1.5		
	(<i>R</i>)- 17a / RIF	16 / 0.5	8/0.25	1		

FICI: fractional inhibitory coefficient index. FICI = (MIC of antibiotic A in association / MIC of antibiotic A alone) + (MIC of antibiotic B in association / MIC of antibiotic B alone). Two antibiotics have a synergistic effect when FICI ≤ 0.5, an additive effect when 0.5 < FICI < 2 and an antagonist effect when $2 \le FICI$.

For all the antibiotic combinations tested, the FICI was equal to 1 or 1.5, demonstrating an additive effect.

^a MIC on M. abs S and R DSM44196, M. marinum DSM44344, M. avium ATCC700898, M. kansasii DSM44162. MIC determined with technical and biological duplicate, ^b Cell viability is expressed as the mean ± standard deviation of a technical triplicate, ^cSI = CC₅₀/MIC on *M. avium* ATCC700898, ^dNA not applicable, ^eND not determined.

References

[1] Rapport sur la tuberculose dans le monde, OMS (2024). [2] Griffith, D.E. et al. American Journal Respiratory and Critical Care Medicine 175, 367-416 (2007).

[3] Diel, R. et al. Chest 153, 888–921 (2018). [4] Brown-Eliott, B.A. et al. Antimicrobial Agents and Chemotherapy 61 (2017). [5] Laumaillé, P. et al. Pharmaceuticals 12, 91 (2019).

[6] Martin-Galiano, A.J. et al. Antimicrob. Agents and Chemother. 46, 1680-1687 (2002). [7] Patel, H. et al. Tuberculosis, 117, 79-84, (2019).

[8] Weinke, T. et al. American Journal of Tropical Medicine and Hygiene 45, 86-91 (1991).

Conclusion and perspectives

Twenty **AAQs** from three series were obtained and sixteen of them were evaluated biologically to identify new SAR/STR (Figure 3). A new hit was identified with a higher SI than hit A and an additive effect was demonstrated with the antibiotics of GBT. Later, toxicity and effectiveness of this hit will be assessed in vivo in a mouse model.

Figure 3: New SAR/STR, in vitro biological properties of hit (R)-17a and perspectives.

The 4th International Electronic Conference on Antibiotics (ECA), 21-23 May 2025.