

The 7th International Electronic Conference on Atmospheric Sciences

04-06 June 2025 | Online

ljilja.torovic@mf.uns.ac.rs

Health risks associated with inhalation exposure to benzo(a)pyrene in City of Novi Sad

Ljilja Torović¹, Stanka Bobić², Slobodan Radišić², Nataša Dragić^{1,2}, Sanja Bijelović^{1,2}

¹ Faculty of Medicine, University of Novi Sad

² Center for Hygiene and Human Ecology, Institute of Public Health of Vojvodina, Novi Sad

INTRODUCTION & AIM

The polycyclic aromatic hydrocarbons (PAHs) in the ambient air can pose a serious health risk for humans when inhaled, usually adsorbed on particulate matter (PM).

The study aimed to investigate benzo(a)pyrene (BaP), the most famous representative of PAHs, in PM10 (inhalable PM, with a diameter up to 10 µm) in City of Novi Sad ambient air and to assess associated health risks.

METHOD

RESULTS & DISCUSSION

Table 1. BaP concentrations (ng/m³) in ambient air

Site	1	2	3	4	5
Ν	223	286	227	330	274
min	0,25	0,25	0,25	0,25	0,25
max	4,7	3,3	5,6	7	7
mean	0,8	0,5	0,9	0,7	0,8

Table 2. Toxicological risk assessment of BaP in ambient air

SAMPLING: ambient air

Reference method: EN 12341

Apparatus: Sven Leckel sequential sampler with sampling inlet for PM10 (Quartz fiber filters)

Sites: 1- basic rural, 2 - basic urban, 3 - suburban traffic, 4 - urban traffic,

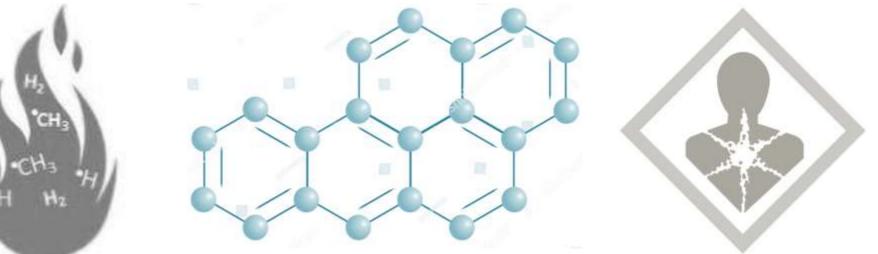
5 - industrial

Period: 24 h sampling, Jan-Dec 2024

Samples: 1340

ANALYSIS:

Reference method: EN 15549


Sample preparation: ultrasound assisted extraction (acetone/hexane), SPE clean-up (C18 columns) Instrument: GC-MS Agilent Technologies 7890B GC / 5977B MSD Laboratory: Institute of Public Health of Vojvodina, ISO 17025 accredited

RISK ASSESSMENT:

 $Ecinh (ng/m^3) = c \times ET \times EF \times ED / ATn$

Noncarcinogeni Carcinogenic ris		ATn = ED × 365 × 24 ATn = 70 × 365 × 24			
HQ = Ec <i>inh</i> / RfCi	US EPA IRIS	RfCi (mg/m ³⁾	IUR (m³/µg)		
	BaP	2,0E-06	6,0E-04		
LCR = Ec <i>inh</i> × IUR	RfCi – refe	erence inhalatory concentratio			
Ecinh – inhalatory exposure concentration IUR - inhalation risl					
ET – exposure time					
EF – exposure frequency					
ED – exposure duration					

	1	Exposure	HQ		Exposure		LCR	
#Z		Children / Adults	Non-carcinogenic risk		Children	Adults	Carcino ris	•
		µg/m³	Children	Adults	µg/m³	µg/m³	Children	Adults
PAH	Site							
BaP	1	7,6E-04	0,38	0,38	1,1E-04	4,4E-04	6,5E-08	2,6E-07
	2	5,3E-04	0,26	0,26	7,5E-05	3,0E-04	4,5E-08	1,8E-07
	3	9,3E-04	0,47	0,47	1,3E-04	5,3E-04	8,0E-08	3,2E-07
	4	7,0E-04	0,35	0,35	10,0E-05	4,0E-04	6,0E-08	2,4E-07
	5	7,9E-04	0,39	0,39	1,1E-04	4,5E-04	6,7E-08	2,7E-07
	All	7,4E-04	0,37	0,37	1,1E-04	4,2E-04	6,4E-08	2,5E-07

BaP occurrence

The overall share of the samples with quantified BaP was 46.6% (53.8% basic-rural > 53.7% suburban-traffic > 49.3% industrial > 45.2% urban-traffic > 34.6% basic-urban site).

The lowest mean concentration was recorded at the basic-urban site (0.5 ng/m^{3}), while the highest was related to suburban traffic (0.9 ng/m^{3}). When averaged over all monitored sites, BaP level was 0.7 ng/m³.

Regulatory compliance

The annual level of BAP complied with the EU regulatory requirements.

ED ATn - period over which exposure is averaged HQ – hazard quotient LCR – lifetime cancer risk

NOVI SAD

KAMENICA

Non-carcinogenic risk

HQ was below the limit value 1 on all monitored sites (0.24-0.47, overall average 0.37), indicating no risk.

Carcinogenic risk

MAC

LCR was negligible for children (from 4.5E-08 to 8.0E-08, mean 6.4E-08) and adults (from 1.8E-07 to 3.2E-07, mean 2.5E-07).

CONCLUSION

Although estimated risk levels are low, the population is exposed not only to BaP but also to other carcinogenic PAHs, and not only by inhalation but also through consumption of foods such as grilled and smoked food. It is important to reduce population exposure to carcinogenic compounds by all relevant exposure pathways.

REFERENCES

Directive 2008/50/EC on ambient air quality and cleaner air for Europe. OJ, 2008, L152.

ECAS-7.sciforum.net