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Abstract: Several studies have already determined the power potential of different types of 
photovoltaic solar cells for indoor applications. However, a detailed study whether or not 
the use of tandem solar cell (i.e. using two solar cells with different bandgaps in a row) is 
beneficial for indoor use is lacking. This paper attempts to fill this lacuna by comparing the 
power output of different tandem solar cells with single-junctions as reference. The 
comparisons are done by efficiency simulations of the solar cells and the light spectra of 
typical artificial light sources, i.e. a typical fluorescent tube, a high pressure sodium and 
metal halide lamp, a typical LED lamp and a common incandescent lamp, which are 
compared to the outdoor AM 1.5 spectrum as reference. More specifically, we study the 
influence of the energy levels of the bandgaps, not only for the usual monolithic 
configuration, but also for a stacked set-up. By determining the relative efficiency gain 
compared to single-junctions, we prove the limited usefulness of tandem solar cells for 
indoor applications. 

Keywords: photovoltaic energy; solar cells; indoor applications; tandem cells. 
 

1. Introduction 

Nowadays, wireless communication networks focused towards indoor applications, use batteries as 
their source of energy. However, batteries have a limited lifetime and have to be replaced in due time. 
The lifetime of the battery is often the limiting factor for the lifetime of the device. Often, the cost of 

OPEN ACCESS



 2 
 

 

replacing the battery outweighs the cost of the device itself. Also from an environmental perspective, 
battery waste should be minimized if possible. The lifetime of the device can be extended if the device 
itself would be able to harvest energy from renewable resources in the environment. Photovoltaic (PV) 
solar energy can be an efficient natural energy source for indoor applications.  

The different PV cells for applications on earth are rated by their power output under standard test 
conditions i.e. an illumination intensity of 103 W/m² under the global AM 1.5G spectrum, at a cell 
temperature of 25 °C. Although these conditions seldom appear at the same time, this characterization 
gives a reasonable guideline for comparing different solar cell types for outdoor conditions. However, 
the standard test conditions are not relevant for indoor applications. Typically, the light intensity under 
artificial lighting conditions found in offices and factories is less than 10 W/m2 as compared to 100-
1000 W/m2 under outdoor conditions, depending on the type of and the distance from the light source. 
Moreover, the spectrum can be totally different from the outdoor solar spectrum. The spectrum 
depends not only on the type of light source, but also on the presence of reflected and diffused light. 
Unfortunately, there are no international norms which determine the way of characterizing solar cells 
for indoor applications. 

Different authors discussed [1-3] and measured [4-7] the spectral mismatch between the absorption 
of solar cells and the spectrum of indoor light sources, but mainly only for single-junction solar cells. 
In this paper we quantify on a fundamental level the gain that can be achieved by using tandem cells 
instead of single-junction cells for indoor applications. More specifically, we study the influence of the 
energy levels of the bandgaps of the tandem cell for different indoor illuminations, not only for the 
usual monolithic configuration, but also for a stacked set-up.  

2. Methodology 

The power conversion efficiency of a solar cell can be significantly increased by using two solar 
cells with different bandgaps Eg in a row, i.e. a tandem solar cell (Figure 1a). The solar cell with the 
highest optical bandgap is in front (side of the sun), thus Eg1 > Eg2. High-energy photons with an 
energy hν > Eg1 are absorbed by the first cell. The second cell, with a lower bandgap Eg2, absorbs the 
low-energy photons with energy between Eg1 and Eg2. In this configuration, the photon energy is used 
more efficiently: the voltage at which electrical charge is collected in each subcell is closer to the 
energy of the photons absorbed in that subcell. 

In the ideal configuration, the subcells are electrically separated. This is called the 4-terminal or 
stacked configuration (Figure 1a). However, this configuration is to date economical irrelevant. 
Indeed, experimental and commercial tandem solar cells are usually of the monolithic (integrated or 2-
terminal) type (Figure 1b). This means that the two cells are not only optically in series, but also 
electrically in series. This configuration will never reach an efficiency that is higher than that of a 
stacked tandem cell, because all single cells cannot operate at their optimal working point at the same 
time (unless they have an equal maximum-power current).  

Because we want to investigate the relationship between on the one hand the energy levels of the 
subcells, and on the other hand the light harvesting potential of the configurations, we assume full 
absorption in each subcell (and consequently leaving the thickness of the subcells aside). We neglect 
interference and optical coupling of the subcells, thus overestimating the efficiency potential. Indeed, 
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we only want to study the relative efficiency gain by using tandem cells instead of single-junction cells 
for indoor applications. 

Figure 1. (a) A 4-terminal or stacked tandem solar cell: the first single cell absorbs 
photons with an energy hν higher than Eg1. The second cell absorbs photons with an energy 
between Eg1 and Eg2. Photons with an energy below Eg2 are not absorbed. The two subcells 
are electrically separated. (b) A monolithic or 2-terminal tandem solar cell: the single cells 
are electrically connected in series. 

 
For our simulations, the following fundamental assumptions are made about the stacked tandem cell 

(Figure 1a): 
• Every photon with an energy hν higher than the bandgap Eg1 is absorbed by the first cell and 

leads to a useful energy Eg1. This assumption implies that each absorbed photon eventually 
leads to a free electron and a free hole, with an energy difference of Eg1 between them. 

• Every photon with an energy hν between Eg1 and Eg2 is absorbed by the second cell and leads 
to a useful energy Eg2. 

• Photons with an energy hν lower than Eg2 are fully transmitted. 
The maximum efficiency ηmax is therefore given by: 
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with N(E) the incident photon flux. Note that the denominator is the total incident photon power 
density of the solar spectrum and does not depend on any bandgap. In this ideal scenario, the open 
circuit voltage Voc of the first and second subcell will be given by Eg1/q and Eg2/q respectively (with q 
the electric charge). The fill factor FF of both subcells is assumed to equal unity, as well as the 
external quantum efficiency EQE of the first cell for wavelengths below the cut-off wavelength λg1 
(corresponding with Eg1). The EQE of the second cell equals unity for wavelengths between cut-off 
wavelength λg1 and λg2 (corresponding with Eg2). Because these parameters are scalable, this 
idealization does not interfere with our goal to quantify the efficiency gain for tandem cells. 
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To study the potential of tandem solar cells for indoor applications, we consider the following 
indoor light sources:  

• An incandescent lamp, represented by a black body on temperature T = 2856 K. 
• A cool white fluorescent lamp with a correlated color temperature of 4230 K. They make up 

the majority of office illumination.  
• Two types of high pressure discharge lamps which are commonly used in commercial and 

industrial environments: a sodium lamp and a metal halide lamp. 
• A typical (cool) LED lamp. 

We compare our results with the AM 1.5G spectrum (the outdoor standard spectrum) as reference [8]. 
If we want to compare the same lighting conditions, we have to scale all the light sources to an equal 
illumination for the human eye to obtain a correct comparison. We choose a value of 500 lux because 
it is recommended for general offices. For the goal of our paper, the value itself is not important, as 
long as it is the same for all light sources. To make a correct comparison possible, we also scale the 
AM 1.5 spectrum to 500 lux. The spectra can be found in Figure 2. We refer to [9, 10] for more details 
regarding the spectra. 

3. Results  

With the spectra and formulae above, we calculate the power conversion efficiency and the 
electrical power output of the single-junction and tandem solar cells under different indoor 
illuminations. We want to stress that the ideal efficiency from these calculations is not attainable in 
practice and the absolute value is only interesting from an academic point of view. However, the 
relative value of the single-junction compared to the tandem cell is relevant, as it describes the 
influence of one parameter only, namely the relative efficiency gain of adding an extra subcell to the 
configuration. 

Figure 3 shows the maximum efficiency in this ideal scenario for a stacked and monolithic tandem 
cell with bandgaps Eg1 and Eg2 under the illumination of the AM 1.5 spectrum. A maximum efficiency 
of 65.2 % and 63.5 % is reached for a stacked and monolithic tandem cell respectively. As mentioned 
already, the efficiency of a monolithic configuration will never be higher than that of a stacked 
configuration. In comparison with a single-junction cell with an optimal bandgap of 1.1 eV, adding a 
second subcell results in a relative gain of about 1/3rd in power conversion efficiency [11]. For higher 
bandgaps, less photons are being absorbed from the solar spectrum, but the useful output energy of 
each absorbed photon is higher. Hence, there is an optimum for each bandgap. This maximum occurs 
for the stacked and monolithic tandem cell at a configuration (Eg1, Eg2) of (1.5 eV, 0.7 eV) and (1.6 eV, 
0.9 eV) respectively. 
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Figure 3. The maximum efficiency for a stacked (left) and monolithic (right) tandem solar 
cell with bandgaps Eg1 and Eg2 under illumination of the AM 1.5 spectrum (top), an 
incandescent lamp (middle) and a fluorescent tube (bottom). 
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4. Conclusions 

We compared the power output of tandem solar cells with single-junctions as reference for typical 
artificial indoor light sources. We studied the influence of the bandgaps of a tandem solar cell for 
typical artificial indoor light sources and found that there is a significant difference between the 
modern light sources (which mainly emit light within the visible region) and the incandescent lamp 
and AM 1.5 spectrum (which also emit light in the non-visible region). We not only considered the 
usual monolithic configuration, but also the stacked set-up. By determining the relative efficiency gain 
compared to single-junctions, we demonstrated the limited usefulness of tandem solar cells for indoor 
applications. 
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