Production of a biofuel that keeps the glycerin as monoglycerides by using supported KF as heterogeneous catalyst

Juan Calero1,*; Gema Cumplido1; Diego Luna1; Enrique D. Sancho2; Carlos Luna1; Alejandro Posadillo3; Felipa M. Bautista1; Antonio A. Romero1; Cristóbal Verdugo4.

1Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Ed. Marie Curie, 14014, Córdoba, Spain.
2Crystallographic Studies Laboratory, Andalusian Institute of Earth Sciences, CSIC, nº4, 18100, Granada, Spain.
3Department of Microbiology, University of Córdoba, Campus de Rabanales, Ed. Severo Ochoa, 14014, Córdoba, Spain.
4Seneca Green Catalyst S.L., Campus de Rabanales, 14014, Córdoba, Spain.

*Author to whom correspondence should be addressed; E-Mail: p72camaj@uco.es
Oil is currently so indisputable the main source of energy, with a demand of about 12 million tons per day, and a projected increase to 16 million tons per day by 2030.

The biofuels benefits over traditional fuels also include greater energy security, reduced environmental impact, foreign exchange savings, and socioeconomic issues related to the rural sector.
1. INTRODUCTION (II)

There are different patents that describe a biofuel that obtain as final product a blend of FAME plus derivatives of the glycerol.
2. OBJECTIVES

• Evaluation of basic catalyst supported KF on three inorganic solids, to obtain partial transesterification similar to different enzymes.

• Obtaining a partial transesterification of sunflower oil that can be used in diesel engines, in blends biofuel plus diesel.

• Optimizing reaction parameters, studying amount of catalyst, oil/methanol volumetric ratio, temperature and water content for KF/Al2O3

• Studying the possibility of reuses for the three catalyst support (KF/Al2O3, KF/ZnO and KF/MgO).
3. EXPERIMENTAL

Synthesis of catalysts: supported KF

To synthesis of KF systems 10% supported on three different inorganic solids (Al2O3, ZnO and MgO) has been used an impregnation method "incipient wetness" with a solution of KF (from Panreac) in methanol-water.

Alcoholysis reactions

The reaction mixture comprises 12 mL sunflower oil, a variable oil/methanol molar ratio (1/2-1/12), temperatures in the range 30-65 °C, different catalyst amounts in the range 0.2-1.0 g and the influence of water amount, in quantities respect to oil 0-0.5 %.

Analytical method

Reaction products were monitored by capillary column gas chromatography, using a Varian 430-GC gas chromatograph, connected to a HT5 capillary column (25 mx 0.32 mm ID x 0.1 im, SGE, Supelco) with a flame ionization detector (FID) at 450 °C and splitless injection at 350 °C. (using as internal standard cetane).

Viscosity measurements

Viscosities were determined in a capillary viscometer based on determining the time needed for a given volume of fluid passing between two points marked on the instrument. The sample is immersed in a thermostatic bath at 40 °C for 15 minutes, making sure that the temperature is stable. The kinematic viscosity is obtained from: \(C \times t = \text{viscosity} \), where \(C \) is the constant calibration (0.040350 mm2 s-1) and \(t \) is the time in seconds.
4. RESULTS (I)

Choice of catalyst

We have tested the same reaction with three different catalyst support KF (Al₂O₃, ZnO and MgO).

Table 1. Reactions performed under standard conditions, using 12 ml of sunflower oil (viscosity 32.0 cSt) 2.43 ml of methanol, temperature at 65 °C and 0.8g of 10% supported KF on various inorganic solids weight Al₂O₃, ZnO and MgO during 1 hour.

<table>
<thead>
<tr>
<th>Support</th>
<th>Viscosity (cSt)</th>
<th>Conversion (%)</th>
<th>Selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>4.62</td>
<td>100</td>
<td>94.95</td>
</tr>
<tr>
<td>ZnO</td>
<td>8.40</td>
<td>100</td>
<td>83.54</td>
</tr>
<tr>
<td>MgO</td>
<td>5.88</td>
<td>100</td>
<td>92.40</td>
</tr>
</tbody>
</table>

To realize the study of the optimization of the experimental conditions, we have chosen the catalyst KF/Al₂O₃ because have the best result (lower viscosity).
4. RESULTS (II)

Influence of catalyst KF/Al2O3 weight on process performance

To evaluate the influence of the weight of the catalyst, we have set the experimental conditions (1 hour, 65 °C, 12 ml sunflower oil and 2.43 ml methanol) and we have used amounts of catalyst from 0.2 to 1 g of KF/Al2O3.

Figure 2. (a) Viscosity values obtained in the heterogeneous selective methanolysis of sunflower oil (viscosity 32.0 mm2/s) under standard conditions, with different amounts of KF/Al2O3, 65 °C, 12 mL of oil and 2.43 mL of methanol. (b) Conversion and Selectivity values obtained with identical conditions.

The results show that, under the experimental conditions Conversion and Selectivity reach a maximum around 0.8 g (7 wt% respect to oil), where kinematic viscosity values are around 4.5 mm2/s.
Influence of molar ratio oil/methanol on process performance

To evaluate the influence of the molar ratio (oil/methanol), we have set the experimental conditions (1 hour, 65 °C, 0.8 g KF/Al2O3 and 12 ml oil) and we have used different amounts of methanol from 1.2 to 2.8 (1/3 to 1/7).

The results show that, Conversion and Selectivity reach a maximum around of molar ratio (1/6), where kinematic viscosity values are around 5 mm2/s.
Influence of temperature on process performance

To evaluate the influence of the temperature, we have set the experimental conditions (1 hour, 0.8 g KF/Al2O3, 12 ml oil and 2.43 ml methanol) and we have used different temperatures from 45 to 65 °C.

Figure 4. (a) Viscosity values obtained in the heterogeneous selective methanolysis of sunflower oil (viscosity 32.0 mm2/s) under standard conditions, with different temperatures (between 45-65 °C), 0.8 g of KF/Al2O3, 12 mL of oil and 2.43 mL of methanol. (b) Conversion and Selectivity values obtained with identical conditions.

The results show that, Conversion and Selectivity increasing with the temperature and kinematic viscosity value is 5 mm2/s. The tendency of the viscosity is decreasing with higher temperatures.
Influence of water amount on process performance
The possibility of using of the waste oil as raw material involves prove that these catalysts can be used with different amount of water. In this respect, we have studied the amount of water in the reaction from 0 to 0.5 % respect to the oil.

4. RESULTS (V)

Figure 5. (a) Viscosity values obtained in the addition of water (from 0 to 0.5 % respect to the oil) in the partial methanolysis of sunflower oil (viscosity 32.0 mm2/s) under standard conditions, with 0.8 g of KF/Al2O3, 65 °C, 12 mL of oil and 2.43 mL methanol. (b) Conversion and Selectivity values obtained with identical conditions.

The results show that, under the experimental conditions with water, Conversion and Selectivity decrease from 100 per cent to around 50 per cent (0.5 % water respect to oil). Kinematic viscosity value increase from 5 to 15 cSt, thus the use of waste oil is not recommend.
4. RESULTS (VI)

Influence of the repeated used on the process performance

To evaluate the possibility of the reuses of the different catalysts (KF support), we have used the experimental conditions defines in the previous sections (1 hour, 0.8 g of catalyst, 12 ml oil, 2.43 ml methanol and 65 ºC) and we have used this conditions for the three catalyst.

Figure 6. (a) Viscosity values obtained in the heterogeneous selective methanolysis of sunflower oil (viscosity 32.0 mm2/s) under standard conditions, with different catalyst, 0.8 g of catalyst, 12 mL oil, 2.43 mL methanol and 65 ºC. (b) Conversion and Selectivity values obtained with identical conditions.

This Figure show the catalytic activity of the different catalyst decreasing in each use (in the same value). Biofuel produced in the first use can be used as pure petrol, but after of the second use have to be used in blend biofuel plus diesel. We have made 5 reuses because the increasing in the viscosity value and the low conversion (and selectivity) indicate that this tendency will continue in the successive reuses.
5. CONCLUSIONS

In this study have developed a method to obtain second generation biodiesel that integrates glycerine as monoglyceride, producing FAME plus MG. These biofuels (named Ecodiesel) are applicable to diesel engines.

Furthermore, to obtain this biofuel were operated at atmospheric pressure, during 1 hour, molar ratio of methanol to oil (6/1), 7% catalyst (respect to oil) and 65 °C reaction temperature.

In this way, under the optimized experimental conditions the partial transesterification reaction was achieved through the kinetic control of the chemical reaction, to obtain the same results previously described in stereoselective enzymatic processes. Thus, the same type of biodiesel that keeps glycerol as MG is obtained by using catalyst support KF, instead of the more expensive lipases.

In summary, this new biofuel can be obtained at very short reaction times (60 min), under soft reaction conditions and be used directly after its production because it is obtained in only one phase and it is not necessary any purification step of residual glycerine.
REFERENCES

Luna, C.; Sancho, E.D.; Luna, D.; Caballero, V.; Calero, J.; Posadillo, A.; Verdugo, C.; Bautista, F.M.; Romero, A.A. Biofuel that keeps glycerol as monoglyceride by 1,3-selective ethanolysis with pig pancreatic lipase covalently immobilized on AlPO4 support. *Energies.* 6 (2013) 3879-3900.

ACKNOWLEDGEMENTS:

Grants from the Spanish Ministry of Economy and Competitiveness (Project ENE 2011-27017), Spanish Ministry of Education and Science (Projects CTQ2010-18126 and CTQ2011-28954-C02-02), FEDER funds and Junta de Andalucía FQM 0191, PO8-RMN-03515 and P11-TEP-7723 are gratefully acknowledged by the authors.

Thank you for your attention!