
   

 

 
  

Abstract 1 

Multiphysics-Enabled Digital Twin Framework for Solar 2 

Loading Thermography-Based Wood Structure Strength Pre- 3 

diction 4 

Yinuo Ding 1, Zhiyang Zhang 1, Gilda Russo 2, Stefano Sfarra 2, *, Hai Zhang 1, * 5 

1 Centre for Composite Materials and Structures (CCMS), Harbin Institute of Technology, Harbin 150001, 6 
China. 7 

2 Department of Industrial and Information Engineering and Economics (DIIIE), University of L’Aquila, 8 
L’Aquila, I-67100, Italy. 9 

 10 
* Correspondence: hai.zhang@hit.edu.cn; 11 

Keywords: Solar Loading Thermography (SLT), Digital Twin, Finite Element Analysis, Structural 12 
Integrity, Soft Rot, Moisture Gradient, Heritage Conservation. 13 
 14 

In this study, we employ solar loading infrared thermography to non-invasively 15 
assess the internal defects and degradation of the millennium-old composite wooden 16 
columns at Baoguo Temple [1,2,3]. As one of China’s best-preserved heritage timber 17 
structures (See Figure 1.), the temple’s mortise-and-tenon construction and fine in- 18 
ter-joint gaps are highly susceptible to moisture ingress and biological decay, leading to 19 
soft rot and micro-cracks. Traditional invasive probes are time-consuming and risk sur- 20 
face damage. By harnessing diurnal solar loading, we record surface thermal responses at 21 
multiple time-points from sunrise to noon using a mid-wave infrared camera [4], cap- 22 
turing subsurface anomalies—such as fissures, insect galleries, and decay—manifested as 23 
thermal contrasts [5,6]. 24 

 25 

Figure 1. Setup of Baoguo Temple’s columns 26 

Thermal images are preprocessed by background subtraction and temporal differ- 27 
ential filtering to enhance weak anomaly signals. A segmentation algorithm automati- 28 
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cally delineates thermal anomaly contours, which are then spatially registered onto a 1 
high-resolution 3D scan of the composite column (See Figure 2.).  2 

 3 

Figure 2. 3D model of the column assembly situation. 4 

Integrating environmental monitoring data, we incorporate real‐time wind speed, 5 
relative humidity, and precipitation into the evaluation workflow. Wind loads [7], de- 6 
rived from computational fluid dynamics simulations, are applied over the column’s 7 
composite surfaces, while moisture ingress under humidity and rainfall is modeled via 8 
diffusion equations to adjust local mechanical properties[8]. This Multiphysics coupling 9 
reveals the stress concentration and deformation evolution within defect zones under 10 
realistic climatic conditions [9]. 11 

Finally, leveraging the material degradation map from thermography and the Mul- 12 
tiphysics loading scenario, we develop a transient finite-element model that yields 3D 13 
stress and displacement fields. By benchmarking simulated stresses against timber 14 
bending and compressive strength limits, we compute safety factors and flag high-risk 15 
composite joints and decay zones for prioritized intervention [10]. This non-destructive 16 
workflow obviates manual probing, enabling rapid on-site defect detection and prelim- 17 
inary structural health assessment, thus supporting informed conservation strategies 18 
[11,12]. 19 

This work pioneers the integration of solar loading infrared thermography, and 20 
Multiphysics transient numerical simulation into a cohesive “detec- 21 
tion–modeling–evaluation” workflow, offering a replicable, non-contact methodology 22 
for structural health monitoring and risk assessment of heritage timber architecture.   23 
Initially, diurnal solar excitation generates surface thermal gradients, recorded by a 24 
mid-wave infrared camera to achieve high-resolution imaging of subsurface anomalies 25 
such as fissures, soft rot, and insect galleries within the millennium-old composite col- 26 
umns of Baoguo Temple.   Subsequently, accurate 3D scanning collects the geometric 27 
data of the column assemblies, which are co-registered with thermal imagery to estab- 28 
lish a spatially consistent dataset for numerical analysis. 29 

By coupling environmental monitoring (wind speed, relative humidity, and precip- 30 
itation) with imposed mechanical loads (bending moments and axial pressures), the 31 
Multiphysics simulation accounts for the dynamic influence of climatic conditions and 32 
service loads on timber properties. Wind loads, derived from computational fluid dy- 33 
namics, adhere to the column surfaces, while moisture diffusion models dynamically 34 
adjust local moisture content and elastic modulus. Finally, the material degradation map 35 
extracted from thermography feeds into a transient finite element model that outputs 36 
real-time 3D stress and displacement fields (See Figure 3.).  37 
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Figure 3. An example of the impact of soft rot on the strain field of three-dimensional models 2 

Safety factors are computed by benchmarking simulated stresses against timber 3 
bending and compressive strength limits, and high-risk zones are flagged for prioritized 4 
intervention. This non-destructive workflow eliminates the need for invasive probing, 5 
balancing detection efficiency with preservation safety, and enables rapid on-site work- 6 
flows for “defect detection–risk quantification–maintenance planning.” 7 
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