
 
 

 
 

 
Proceedings 2024, 71, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/proceedings 

Abstract 1 

Characterisation of damaged tubular composites by acoustic 2 

emission, thermal diffusivity mapping, and TSR-RGB projec- 3 

tion technique † 4 

Neha Chandarana 1,2,*, Henri Lansiaux 3, and Matthieu Gresil 2,4 5 

1 Bristol Composites Institute (BCI), University of Bristol, Bristol, UK 6 
2 Department of Materials, The University of Manchester, Manchester, UK 7 
3 Ecole Nationale des Arts et Industries Textiles (ENSAIT), Roubaix, France  8 
4 i-Composites Lab, Monash University, Melbourne, Australia; matthieu.gresil@monash.edu  9 
* Correspondence: neha.chandarana@bristol.ac.uk  10 
† Presented at the AITA Conference, 15-19 September 2025, Kobe, Japan. 11 

Keywords: composite materials; infrared thermography; acoustic emission 12 
 13 

1. Introduction 14 
An increase in the use of composite materials, owing to improved design and fabri- 15 

cation processes, has led to cost reductions in many industries. Resistance to corrosion, 16 
high specific strength, and stiffness are just a few of their many attractive properties. How- 17 
ever, damage tolerance remains a major concern in the implementation of composites and 18 
uncertainty regarding component lifetimes can lead to over-design and under-use of such 19 
materials.  20 

Non-destructive evaluation (NDE) techniques are often adopted for periodic inspec- 21 
tion of composite structures while they are in service. Inspection of structures in this way 22 
can reduce the life cycle cost of a component by preventing premature replacements, 23 
while also improving safety and reducing the likelihood of catastrophic failure. Common 24 
methods of NDE include the use of x-rays, ultrasonic waves [1], eddy currents [2], 25 
shearography [3–5], and infrared thermography [6–17]. Though non-destructive tech- 26 
niques (NDT) offer an insight into the performance of composite materials and the envi- 27 
ronments in which they operate, their implementation can represent significant down- 28 
time and labour costs. The use of structural health monitoring (SHM) systems has sparked 29 
interest in recent years as they can be integrated directly into a composite structure during 30 
manufacture [18,19]. Sensors and embedded networks can be used to monitor various 31 
parameters such as local stress, strain, temperature, impact, delamination, and crack 32 
propagation in-situ and in real time [20–23]. Where the use of SHM and NDE are com- 33 
bined, it becomes possible to carry out “focused” inspections using non-destructive tech- 34 
niques, saving both time and money. 35 

2. Experimental methodology 36 
In this work, infrared thermography (IRT) was employed for NDE of tubular com- 37 

posite specimens before and after impact. Four samples were impacted with energies of 38 
5 J, 7.5 J, and 10 J by an un-instrumented falling weight set-up. Acoustic emissions (AE) 39 
were monitored using bonded piezoelectric sensors during one of the four impact tests. 40 
IRT data is used to generate diffusivity and thermal depth mappings of each sample using 41 
the thermographic signal reconstruction (TSR) red green blue (RGB) projection technique.  42 
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3. Results 1 
The diffusivity mapping was obtained for each sample by calculation of the diffusiv- 2 

ity of each individual pixel in the raw image. This is done by calculation of t* which re- 3 
quires the fitting of two tangents. A minimum correlation coefficient of 0.99 is used to fit 4 
the tangent to the curve. Fig.1 shows the thermal diffusivity mapping of the four samples 5 
after impact. The coloured scale indicates the value of thermal diffusivity for each pixel in 6 
the image. Measurement of the width of each sample here allows for comparison between 7 
each of the defects.  8 

 9 
Figure 1. Thermal diffusivity mapping focused on the impact location on (a) Sample 1–10 J impact, 10 
(b) Sample 2–7.5 J impact, (c) Sample 3–5 J impact, and (d) Sample 4–10 J impact. The scale bar shows 11 
the thermal diffusivity, α (m2/s 12 

Analysis of AE data alone for a 10 J impact suggest significant damage to the fibres 13 
and matrix; this is in good agreement with the generated thermal depth mappings for 14 
each sample, which indicate damage through multiple fibre layers. IRT and AE data are 15 
correlated and validated by optical micrographs taken along the cross section of damage. 16 
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