SELECTION OF SOLAR COLLECTORS TECHNOLOGY AND SURFACE FOR A DESICCANT COOLING SYSTEM BASED ON ENERGY, ENVIRONMENTAL AND ECONOMIC ANALYSIS

G. Angrisani, C. Roselli, M. Sasso, F. Tariello

DING, Department of Engineering, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy.

1st International e-Conference on Energies 14 - 31 March 2014

> AIMS

- > INTRODUCTION
- > TEST FACILITY
- SIMULATION MODEL
- PERFORMANCE ASSESSMENT
- ➢ RESULTS

> CONCLUSIONS

AIMS

- Investigation of a solar desiccant cooling system (SDCS);
- SDCS based on an air handling unit (AHU) with rotary desiccant wheel (DW);
- Energy, environmental and economic analysis;
- Comparison with a reference system based on a conventional air conditioning system;
- Four thermal energy sources are considered for DW regeneration:
 - Air collectors (scenario A)
 - Flat-plate collectors (scenario B)
 - Evacuated-tube collectors (scenario C)
 - Natural gas fuelled boiler (scenario D)

INTRODUCTION: ADVANTAGES OF SOLAR COOLING

Desiccant-based AHUs can guarantee significant technical and energy/environmental advantages, mainly when the regeneration of the desiccant material is obtained by means of a renewable energy source, such as solar energy:

- solar radiation availability coincides with the cooling demand;
- summer peak demand of electricity, due to extensive use of electric air conditioners, can be lowered;
- black-out risks can be attenuated;
- reduction in fossil fuels use and related environmental impact;
- energy sources differentiation.

INTRODUCTION: ADVANTAGES AND DRAWBACKS OF DESICCANT COOLING

The main advantages of these systems, in comparison with conventional ones

- (cooling dehumidification with electric vapor compression system), are:
- + sensible and latent loads can be controlled separately;
- + the chiller has a lower size and operates at a smaller temperature lift with a higher COP (lower electricity requirements);
- + primary energy savings;
- + reduction of environmental impact;
- + accurate humidity control and better IAQ.
- + moderate regeneration temperature, suitable for solar cooling applications;

The drawbacks of this technology are:

- high investment costs;
- high thermal energy requirements to regenerate the wheel.

THE TEST FACILITY AT **UNIVERSITA' DEGLI STUDI DEL SANNIO - I**

THE TEST FACILITY AT UNIVERSITA' DEGLI STUDI DEL SANNIO - II

- air-cooled water chiller: 8.50 kW cooling capacity, COP 3.00;
- boiler: 24.1 kW thermal power, 90.2% thermal efficiency;
- storage tank: carbon steel, 1000 dm³ capacity, 855 dm³ net storage volume, insulated with a 100 mm thick layer of polyurethane (thermal conductivity 0.038 W/mK), 3 internal heat exchangers;
- desiccant wheel: silica-gel (regeneration at 60-70 °C), 50 kg weight, 700

mm diameter, 200 mm thickness, 60% of the rotor area is crossed by the process air, 40% by the regeneration air, nominal rotational speed 12 RPH.

DESICCANT-BASED AHU

THE USER

- 30 seats, occupancy schedule expressed as percentage of the maximum capacity;
- activation schedule from Monday to Saturday, 8:30-18:00;
- summer set-point 26 °C and 50% RH.

	Opaque Components				Transparent Components		
	Roof	External walls (N/S)	External walls (E/W)	On the ground floor	North	South	East/ West
U [W/m ² K]	2.30	1.11	1.11	0.297	2.83	2.83	2.83
Area [m ²]	63.5	36	15.87	63.5	8.53	9.40	0.976
g [-]		-	-		0.755	0.755	0.755

Thermal energy for DHW is provided to a nearby multifamily house with 10 persons and an average requirement of 40 l/(person-day).

ENERGY FLOWS - I

- heating coil $(E_{th,HC})$, for regeneration of the DW ($E_{th,reg}$);
- $E_{p,B}$ is the primary energy input of the boiler;

the

ENERGY FLOWS - II

- Electric energy for the auxiliaries $(E_{el,aux})$ and the chiller $(E_{el,chil})$ is drawn from the
 - $E_{p,EG}$ is the primary energy input of the
 - The chiller produces chilled water $(E_{co.chil})$ for the cooling coil (CC);
- Cooling energy is transferred from the chilled water to the process air in the CC $(E_{co,CC}).$

METHOD

- The performance of the four desiccant cooling scenarios have been evaluated and compared with a reference system, in terms of:
 - > Annual avoided primary energy consumption, $E_{p,av} = E_p^{RS} E_p^{SDCS}$
 - > Annual avoided equivalent CO_2 emissions, $CO_{2-eq,av} = CO_{2-eq}^{RS} CO_{2-eq}^{SDCS}$
 - > Annual avoided operating costs, $OC_{av} = OC^{RS} OC^{SDCS}$
 - > Simple Pay Back Period, $SPB = \frac{Extra Cost}{OC^{RS} OC^{SDCS}}$
- Reference system (RS) equipped with electric chiller (for cooling dehumidification) and natural gas boiler (for air post-heating and DHW).
- The dynamic simulation software TRNSYS 17.1 was used.
- Simulations were performed on an annual basis, with a time step of 0.5 h.
- Slope and the azimuth of the solar collectors surface set to 20° and 0°, respectively.
- Gross solar collectors surface varied in the range $4 16 \text{ m}^2$, with a 2 m^2 step.
 - Experimental and manufacturer data were used to simulate component models.

MAIN SIMULATION MODELS

Component	Main parameters	Value	Units
	Overall reflectance of the collector surface		-
	Emissivity of the top and back surfaces of the collector	0.85	-
Solar air colloctors	Emissivity of the top and bottom surface of the flow channel	0.85	-
	Conductive resistance of the back insulation layer	3.6	m ² · K/W
	Conductive resistance of the absorber plate and structural layer	0.036	m² • K/W
	Specific heat capacity of air	1.007	kJ/(kg⋅ K)
	Tested flow rate	0.0213	kg/(s⋅m²)
	Intercept efficiency	0.712	-
Flat-plate solar collectors	Efficiency slope	3.53	W/(m²⋅K)
	Efficiency curvature	0.0086	W/(m ² ·K ²)
	Fluid specific heat	3.84	kJ/(kg⋅K)
	Tested flow rate	0.0213	kg/(s⋅m²)
	Intercept efficiency	0.72	-
Evacuated solar collectors	Efficiency slope	0.97	W/(m²⋅K)
	Efficiency curvature	0.0055	W/(m ² ·K ²)
	Fluid specific heat	3.84	kJ/(kg⋅K)
Desiccant wheel	Effectiveness η _{F1}	0.207	-
	Effectiveness η _{F2}	0.717	-
Cross flow heat exchanger	Effectiveness	0.446	-
Humidifier	Saturation efficiency	0.551	-
Heating coil	Effectiveness	0.842	-
Cooling coil	By-pass fraction	0.177	-

PERFORMANCE ASSESSMENT METHODOLOGY - I

Numerical values of the parameters refer to the Italian situation:

- average energy performance factor of electricity supply η_{EG} =42.0%;
- thermal efficiency of the boiler $\eta_B = 82.8\%$;
- specific emission factor of electricity drawn from the grid, α=0.573 kg/kWh_{el};
- specific emission factor related to natural gas consumption, β=0.207 kg/kWh_p;
- lower heating value of natural gas LHV=9.52 kWh/Nm³;
- unitary cost of natural gas c_{NG}=0.612 0.964 €/Nm³;
- unitary cost of electricity c_{el}=0.221 €/kWh;

PERFORMANCE ASSESSMENT METHODOLOGY - II

- major cost of desiccant-based AHU with respect to conventional one is 10,000 €;
- investment cost of storage tank equal to 3,000 €;
- investment cost of chiller: 3000 € for the SDCSs, 6000 € for the RS;
- specific cost of collectors: 275 €/m² for air collectors; 360 €/m² for flatplate collectors; 602 €/m² for evacuated collectors;
- Italian subsidy mechanism for 2 years:

 $I_{a,tot} = C \cdot S;$ annual incentive = valorization coefficient (255 \in /m^2) x gross solar collectors area

RESULTS: ANNUAL AVOIDED PRIMARY ENERGY CONSUMPTION

The annual avoided primary energy consumption ($E_{p,av}$):

- rises with the solar surface;
- is higher with evacuated collectors (scenario C);
 - is positive for scenario C and B only beyond a certain surface;
 - is negative with air collectors (scenario A) for any surface.

Scenario D has a higher primary energy consumption

(about 8.91 MWh/y more than the reference system).

RESULTS: ANNUAL AVOIDED EQUIVALENT CO₂ EMISSIONS

The annual avoided equivalent CO_2 emissions $(CO_{2-eq,av})$:

- rises with the solar surface;
- is higher with evacuated collectors (scenario C);
- is positive for scenario C and B only beyond a certain surface;
- is negative with air
 collectors (scenario A) for
 any surface.

Scenario D has higher annual equivalent CO₂ emissions

(about 1.64 t/y more than the reference system).

RESULTS: OPERATING COSTS

Scenario D has higher operating costs (about 864 €/y more than the reference system).

The difference in operating costs between the RS and the SDCS (*OC*^{RS}-*OC*^{SDCS}):

- rises with the solar surface;
- is higher with evacuated collectors (scenario C);
- is positive for scenario C and B only beyond a certain surface;
- is negative with air collectors (scenario A) for any surface.

RESULTS: EXTRA COST, SUBSIDY MECHANISM AND SIMPLE PAY BACK PERIOD

The *EC* of the SDCS is never recovered in scenarios A and D. For flat-plate collectors, the SPB is longer than the technical life of the system. For evacuated collectors (scenario C), 16 m² of solar surface provide a SPB of about 20 years.

The installation extra cost (*EC*) with respect to RS:

- rises with the surface;
- is higher for scenario C;
- does not include the storage tank for scenarios A and D.
 The subsidy mechanism:
- is not provided for air collectors;
- starts from 8 m²;
 - is the same for flat-plate and evacuated collectors;
 - it ranges from 2040 to 4080 €/y;
 - it is provided for two years.

CONCLUSIONS: SELECTION OF SOLAR COLLECTORS TECHNOLOGY AND SURFACE

In the final selection process:

- Scenario A is excluded, due to the low energy and environmental performance, and for the absence of economic incentives;
- Scenario D is discarded, due to the lower techno-economic performance with respect to the RS;
- Scenario B is excluded as well, as it does not achieve a suitable economic payback period;
- the final choice should be 16 m² of evacuated collectors (scenario C);
- the selected solution provides a reduction of 50.2% of primary energy consumption, a reduction of 49.8% of avoided equivalent CO₂ emissions, with an extra cost of about 19.6 k€ and a (quite long) SPB of about 20 years.
- a further possibility (to be investigated) could be the installation of flat-plate collectors with a surface higher than 16 m²; the economic analysis showed that the SPB reduces if the solar area is increased, for all types of collectors.

