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 16 

1. Introduction 17 

Components and structures made from composite materials can develop defects at 18 

various stages, including during manufacturing [1] and as a result of in-service use  [2]. 19 

These issues can manifest as impact damage, internal flaws like resin or transverse ply 20 

cracks, voids, porosity, and poorly bonded interlaminar regions [3], often stemming from 21 

production errors. Such defects compromise the structural integrity and reduce the 22 

strength of the component. 23 

While surface defects are readily observable, internal defects pose a greater chal- 24 

lenge for detection. Traditional inspection methods often lack the effectiveness to identify 25 

these subsurface flaws, highlighting the need for more sophisticated non-destructive 26 

testing (NDT) techniques. Thermography testing (TNDT) has emerged as one of the 27 

promising NDT methods for detecting defects within Carbon Fiber Reinforced Polymer 28 

(CFRP) structures. 29 

Experimental methods for defect detection often require substantial time and financial 30 

resources. To address these limitations, simulation-based approaches have been increas- 31 

ingly adopted. In particular, simulation-based TNDT has proven effective for identifying 32 

internal defects in CFRP composites [4]. 33 

Defect size in materials can be measured using methods like Full-Width Half Maxi- 34 

mum (FWHM) [5], temperature profile derivatives [6], and machine learning [7]. This 35 

study explores this problem using a combined methodology.  36 

Deep learning is widely used in defect detection. This study leverages deep learning 37 

to explore the relationship between thermal images—capturing surface temperatures of 38 

CFRP samples—and FEA-simulated images. A Generative Adversarial Network (GAN) 39 

was developed to train the data and generate simulations closely matching the originals. 40 

 41 

2. Model and Specimen 42 

The simulation model and experimental specimen were both constructed from 43 

woven rectangular CFRP prepreg, comprising seven layers with a stacking sequence of 44 

Citation: To be added by editorial 

staff during production. 

Academic Editor: Firstname Lastname 

Published: date 

 

Copyright: ©  2024 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Proceedings 2024, 71, x FOR PEER REVIEW 2 of 4 
 

 

[+45/0/-45/0/-45/0/+45]. Each layer had a nominal thickness of 0.28 mm. However, the 1 

overall thicknesses differed: the model had a thickness of 1.96 mm, while the manufac- 2 

tured specimen measured 1.89 mm, likely due to thickness shrinkage during the fabrica- 3 

tion process. The dimensions and defect layout are detailed in Figure 1. Two types of 4 

defects have been analyzed: void defects (1A, 1B, 1C) and polyethylene defects (2A, 2B, 5 

2C). 6 

Specimen material thermal conductivity values were based on Joven's research [8] 7 

for Cytec T300 3k/977-2 plain weave, with additional data for Cytec T300 sourced from 8 

Toray [9]. Material properties are listed in Table 1. 9 

 10 
                   (a) (b) 11 

Figure 1. Dimension and defect layout: (a) Model and (b) experiment. 12 

Table 1. Material’s properties. 13 

Material 
Thermal Conductivity 1 

Specific Heat 2 Density 3 
x y Z 

Woven CFRP Prepeg 3.1 3.1 0.6 1000 1420 

Polyethylene - 0.28 - 2300 950 

Void (air) - 0.026 - 1021 1.13 

1 Thermal Conductivity in W/m.K;  2 Specific Heat in J/kg.K;  3 Density in kg/m3  14 

Finite Element Analysis 15 

The mesh model, constructed with SOLID278 and SURF152 elements, used a 0.25 16 

mm mesh size, chosen to approximate the 0.36 mm pixel size of the experiment. Natural 17 

cooling of the model was simulated with convective heat transfer (h = 5 W/m².K ) occur- 18 

ring at all surfaces. The ambient temperature was 26.5 oC, and the data acquisition rate 19 

was 3 Hz. Two analyses were carried out. The first applied a uniform heat flux of 650 20 

W/m² to the front surface for 21s. The second analysis applied a uniform heat flux of 925 21 

W/m² to the back surface for 30s. 22 

Experimental Design 23 

Two identical 500W halogen lamps provided the heat source. The lamps heat the 24 

specimen surface for about 34 seconds for the front heating and 37 seconds for the back 25 

heating. An infrared camera, Avio InfRec R500EX, captured the thermal images and 26 

provide the thermal data. The camera acquisition rate was set at 3 Hz for 120 seconds. 27 

The room temperature was 25 oC. 28 

3. Defect Size Determination  29 

The defect size measured along the y-axis at position x = 20, 30, 40, and 50 mm for 30 

polyethylene defects, and x = 140, 130, 120, and 110 mm for void defects, correspond to 31 

defect widths (Δy) of 8, 6, 4, and 2 mm, respectively, as shown in Figure 1(a). 32 

Defect size was quantified using two methods: Full-Width Half Maximum (FWHM) 33 

and the derivative of the temperature profile. FWHM measures the width at half the 34 
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maximum temperature contrast. The derivative method measures the distance between 1 

the peaks of the temperature profile’s first derivative around the defect, a technique 2 

linked to maximum lateral heat fluxes at defect border projections [6]. 3 

4. Result 4 

Measurement error comparisons of the front and back heating simulation and ex- 5 

periments are tabulated in Tables 2 and 3. In evaluating defect detectability using front 6 

heating: 7 

1. The simulation identified minimum detectable defect sizes of 6 mm (derivative) for 8 

polyethylene and 4 mm (FWHM and derivative) for void defects. 9 

2. Conversely, the experiment did not detect polyethylene defects, while it detected 10 

void defects with a minimum size of 6 mm (derivative). 11 

For back heating: 12 

3. The simulation achieved a minimum detectable defect size of 4 mm (derivative) for 13 

both polyethylene and void defects (FWHM and derivative). 14 

4. The experiment detected polyethylene defects at a minimum size of 8 mm (FWHM) 15 

and void defects at 4 mm (derivative). 16 

 17 

Table 2. Measurement error for the front heating. 18 

Defect Size 
Simulation Experiment 

FWHM Derivative FWHM Derivative 

Polyethylene 

8 mm 27% 12% 24% 33% 

6 mm 43% 13% 65% 72% 

4 mm 76% 22% 113%  - 

Void 

8 mm 14% 11% 7% 9% 

6 mm 27% 10% 15% 8% 

4 mm 60% 16% 35% 67% 

Table 3. Measurement error for the back heating. 19 

Defect Size 
Simulation Experiment 

FWHM Derivative FWHM Derivative 

Polyethylene 

8 mm 26% 7% 19% 29% 

6 mm 55% 8% 36% 64% 

4 mm 95% 16%  -  - 

Void 

8 mm 16% 17% 27% 20% 

6 mm 11% 11% 18% 11% 

4 mm 13% 15% 43% 7% 

5. Discussion 20 

Perfect alignment between infrared thermal and FEA-simulated images is difficult 21 

to obtain. However, the simulated results are difficult to distinguish from the discrimi- 22 

nators those provided by GAN. CycleGAN addresses this by learning to translate be- 23 

tween the two image domains without requiring paired data [10].  24 

In this study, we leverage the CycleGAN model to learn the translation between 25 

collected infrared thermal images and FEA simulated images. The 2000 iterations can 26 

reach the convergence. The differences between Generator G and F are decreasing as the 27 
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iterations increase. Furthermore, the differences between the discriminators X and Y can 1 

decrease after 2000 iterations, as shown in Figure 2. 2 

 3 

 Figure 2. The relations of the loss functions and generators G and F and the discriminators X and Y 4 

6. Conclusion 5 

Two main conclusions can be drawn based on the results of the current study: 6 

1. For estimating defect size, the derivative method demonstrated good performance in 7 

the simulation, whereas the FWHM method yielded better results in the experiment.  8 

2. Further refinement of the CycleGAN model is necessary before it can be reliably used 9 

for defect predictions.  10 

Author Contributions: Conceptualization and methodology: M.H. and C.C.; software, validation, 11 
formal analysis, data curation, visualization, and investigation: M.H. and Y.H.; Writing—original 12 
draft preparation, M.H.; writing—review and editing: M.H., Y.H., and C.C.; project administration, 13 
and funding acquisition: C.C.  14 

Funding: This work was supported by NSTC, Taiwan. Project number NSTC 113-2221-E-324-005. 15 

Conflicts of Interest: The authors declare there are no conflicts of interest.  16 

References 17 

1. Almeida, J.H.S.; Angrizani, C.C.; Botelho, E.C.; Amico, S.C. Effect of Fiber Orientation on the Shear Behavior of Glass Fi- 18 
ber/Epoxy Composites. Mater. Des. 1980-2015 2015, 65, 789–795, doi:10.1016/j.matdes.2014.10.003. 19 

2. Rao, K.S.; Varadarajan, Y.S.; Rajendra, N. Erosive Wear Behaviour of Carbon Fiber-Reinforced Epoxy Composite. Mater. Today 20 
Proc. 2015, 2, 2975–2983, doi:10.1016/j.matpr.2015.07.280. 21 

3. Nsengiyumva, W.; Zhong, S.; Lin, J.; Zhang, Q.; Zhong, J.; Huang, Y. Advances, Limitations and Prospects of Nondestructive 22 
Testing and Evaluation of Thick Composites and Sandwich Structures: A State-of-the-Art Review. Compos. Struct. 2021, 256, 23 
112951, doi:10.1016/j.compstruct.2020.112951. 24 

4. Hidayat, M.; Chiang, C.-H.; Yen, M. Determination of the Defect’s Size of Multi-Layer Woven CFRP Based on Its Temperature 25 
Profile. Int. J. Appl. Sci. Eng. 2023, 20, 1–9, doi:10.6703/IJASE.202309_20(3).003. 26 

5. Guo, W.; Dong, L.; Wang, H.; Feng, F.; Xing, Z.; Ma, R.; Shao, H.; Gao, Z.; Wang, B.; Yang, J. Size Estimation of Coating Dis- 27 
bonds Using the First Derivative Images in Pulsed Thermography. Infrared Phys. Technol. 2020, 104, 103106, 28 
doi:10.1016/j.infrared.2019.103106. 29 

6. Vavilov, V.P. 3D Modeling of Pulsed Thermal NDT: Back to Basic Features and Subtle Phenomena. NDT E Int. 2022, 130, 30 
102659, doi:10.1016/j.ndteint.2022.102659. 31 

7. Daghigh, V., Ramezani, S.B., Daghigh, H., Lacy, T., Explainable artificial intelligence prediction of defect characterization in 32 
composite materials. Composites Science and Technology, 2024, 256, 110759, doi: 0.1016/j.compscitech.2024.110759. 33 

8. Joven, R.; Das, R.; Ahmed, A.; Roozbehjavan, P.; Minaie, B. THERMAL PROPERTIES OF CARBON FIBER-EPOXY COMPO- 34 
SITES WITH DIFFERENT FABRIC WEAVES. 35 

9. Carbon Fiber and Prepreg Data Sheets | Toray Composite Materials America. Toray Compos. Mater. Am. Inc. 36 
10. Zhu, Y.-H., Park, T., Isola, P., Efros, A. A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Net- 37 

works. IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, 2242-2251, doi: 10.1109/ICCV.2017.244. 38 
 39 


