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Abstract: Laser Powder Bed Fusion (L-PBF) of AlSi10Mg is challenged by rapid thermal transients 14 

and high diffusivity. This study applies a microbolometer-based thermal monitoring system to 15 

correlate laser power, scan speed, and build position with thermal features. Results demonstrate 16 

reliable detection of defects such as keyhole porosity, supporting real-time process control and 17 

quality assurance. 18 
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 20 

1. Introduction 21 

Laser Powder Bed Fusion (L-PBF) is one of the most advanced additive manufac- 22 

turing (AM) technologies for producing metal parts with complex geometries and high 23 

mechanical performance [1,2]. Among commonly used alloys, AlSi10Mg is particularly 24 

valued for its low weight and favorable mechanical properties, making it suitable for 25 

aerospace and automotive applications. However, its high thermal diffusivity poses 26 

challenges during processing due to rapid temperature changes and complex heat dis- 27 

sipation. 28 

Effective process monitoring is therefore essential to ensure part quality and re- 29 

peatability. Infrared thermography has emerged as a promising in situ technique for 30 

monitoring L-PBF, allowing the capture of thermal signatures related to the melt pool 31 

and surrounding powder bed [1,2]. Although the melt pool is typically smaller than the 32 

resolution of conventional thermal cameras, previous studies have shown that statistical 33 

features extracted from thermal images can successfully correlate process parameters 34 

with defect formation [3–6]. This method eliminates the need for direct melt pool visu- 35 

alization or precise knowledge of emissivity and absolute temperature, which are often 36 

difficult to determine during processing [3]. 37 

Recent research has used thermal data to predict mechanical properties and detect 38 

common defects such as keyhole porosity and lack of fusion, employing both statistical 39 

analysis and machine learning approaches [1–6]. 40 

This work employs a fixed microbolometer thermal system and a Design of Ex- 41 

periments (DOE) varying laser power and speed to analyze thermal features, such as 42 

cooling rate, and their correlation with process parameters and defects during L-PBF of 43 

AlSi10Mg. The results support real-time monitoring for improved process control and 44 

quality assurance. 45 
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2. Material and Methods 2 

Experiments were conducted on an EOS M290 L-PBF machine equipped with a FLIR 3 

A700 camera. The IR system uses a ZnS window and records at 30 fps with a spatial res- 4 

olution of ~0.6 mm/pixel. Figure 1 illustrates the system and build layout. Small cubes 5 

and cylindrical tensile specimens (ASTM E8/E8M) were built with varying power, scan 6 

speed, and position on the plate (Table 1). In a dedicated Job, induced keyhole porosity 7 

was achieved by reducing scan speed in selected regions, increasing VED from ~74 to 8 

~147 J/mm². For defect areas, a 24° lens was used, improving resolution to ~0.35 9 

mm/pixel. 10 

            11 
                  (a)                                     (b) 12 

Figure 1. (a) Adopted set-up for thermal monitoring, and (b) schematic representation of the 13 
specimens on the build platform for one Job (Job 1). 14 

Table 1. Design of Experiments (DOE) related to the specific sub-plan, detailing the process pa- 15 
rameters and levels analyzed in this study. 16 

Input 

Parameters 
ID 

Power 

(P – W) 

Speed 

(s – mm/s) 
Replication Position 

Levels 

1 370 1300 

layers 1, 2, 3, 4, 5 

I 

3 370 700 II 

7 230 1300 III 

9 230 700 IV 

The bulk material surrounding the defects was processed using a laser power of 370 17 

W, a scanning speed of 1280 mm/s, and a volumetric energy density (VED) of 74.12 18 

J/mm2. In contrast, keyhole porosity was induced in designated defect areas by reducing 19 

the scanning speed to 700 mm/s, resulting in an increased VED of 146.83 J/mm2. Thermal 20 

acquisitions during these tests were performed using a 24° lens, yielding a spatial reso- 21 

lution of approximately 0.35 mm per pixel. 22 

3. Procedure for data analysis 23 

The data analysis procedure involved reconstructing the thermal signal by identi- 24 

fying the maximum signal value associated with the laser scan during material deposi- 25 

tion in each region. A 3D sequence was then reconstructed by aligning all frames relative 26 

to the maximum (peak) value. Since the laser operates in successive short scan paths and 27 

due to the limited track length and high scan speed, secondary peaks may occur as the 28 

laser passes nearby shortly after the first exposure.  29 

To avoid interference from overlapping thermal signals, the analysis was restricted 30 

to the 10 frames following the identified peak. By considering this window, slope and R² 31 

[7] were assessed pixel by pixel in both linear and double-logarithmic scales in order to 32 

obtain feature maps capable of describing the local cooling behavior in relation to process 33 

parameter variations.  34 

From defined rectangular regions of interest (~2000 pixels per sample), a range of 35 

statistical features—including mean, standard deviation, minimum, maximum, and se- 36 

lected percentiles—were calculated for each thermal sequence. These features were then 37 
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used in ANOVA and regression analyses to identify correlations with process parameters 1 

and build position. 2 

4. Results and discussion 3 

Figure 4 presents the results obtained for a specific Job, where at least one specimen 4 

with a label ID (as reported in Table 1) is present for each combination of process pa- 5 

rameters, considering both the maximum temperature (Figure 2a) and the cooling slope 6 

(Figure 4b). In addition, Figure 2c shows the slope map extracted in a double logarithmic 7 

scale, which highlights thermal features related to the cooling behavior during process 8 

monitoring of specimens with intentionally induced defects — specifically simulating 9 

keyhole porosity. As expected, in these defective areas, where scan speed is reduced and 10 

volumetric energy density (VED) is increased, the apparent temperatures are higher. This 11 

confirms the method's potential for detecting small defects, approximately 1 mm in size. 12 

         13 
                  (a)                            (b)                             (c) 14 
Figure 2. Extraction of specific thermal features after signal reconstruction (Job 1): (a) maximum 15 
apparent temperature and (b) slope in double linear scale and (c) slope map of the specimen ex- 16 
hibiting keyhole porosity in specific selected areas (Job 4). 17 

Qualitatively speaking, significant high apparent temperatures are observed at low 18 

scan speeds (ID 3). Additionally, the cooling slope is steeper (more negative) when the 19 

scan speed remains at its lowest level. This effect is even more pronounced for the 20 

specimen with ID 3, where the laser power is at its highest level. Among the four tested 21 

conditions, this one corresponds to the highest VED (Volumetric Energy Density).  22 

The statistical analysis (ANOVA), reported in Table 2, confirmed that power, scan 23 

speed, and position had statistically significant effects (p < 0.001) on both the maximum 24 

temperature and the cooling slope descriptors. In contrast, the replicate factor showed no 25 

significant influence (p > 0.05), supporting the repeatability and robustness of the meas- 26 

urements collected during the printing of different layers. 27 

Table 2. ANOVA results considering as thermal feature the linear slope and the mean apparent 28 
temperature as statistical measure of comparison. 29 

Analysis of Variance (ANOVA) 

Source Sum Sq df Mean Sq F Prob>F 

Power 2374 1 2374 16.74 0.0001 

Speed 28790.1 1 28790.1 203.03 0 

Position 15627.3 3 5209.1 36.74 0 

Replication 59 4 14.8 0.1 0.9807 

Power : Speed 4283.9 1 4283.9 30.21 0 

Error 9843.2 73 141.9   

Total 60918.5 79    

Based on the results obtained from the ANOVA analysis, Figure 3 presents the cor- 30 

relations between thermal features and process parameters with regression models, sep- 31 

arating the four positions and evaluating the RMSE, SNR, and R² values. 32 

The results show consistently lower variability in Position II, which aligns with the 33 

physics of the process. In fact, this quadrant represents the most favourable printing area, 34 

with the recoater moving from right to left and the gas flow directed from top to bottom. 35 

In contrast, the other positions exhibit a steeper negative cooling slope across the 36 

different parameter combinations, indicating reduced cooling efficiency. 37 
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Figure 3. Correlation thermal response vs process parameters considering the different positions in 2 
the build platform (a – I position, b – II position, c – III position, d – IV position). 3 

5. Conclusions 4 

The implementation of thermal monitoring via microbolometer sensors enables ro- 5 

bust correlation between process parameters and thermal features in L-PBF of AlSi10Mg, 6 

despite spatial resolution limitations (~0.6 mm/pixel), without requiring knowledge of 7 

the actual emissivity, or monitoring of the melt pool behaviour.  8 

ANOVA results reveal statistically significant effects (p < 0.001) of laser power, scan 9 

speed, and build position on thermal features such as maximum apparent temperature 10 

and cooling slope, with linear models capable of describing this correlation. Moreover, 11 

localized detection of keyhole porosity defects, approximately 1 mm in size, is demon- 12 

strated through slope map analysis, confirming the system’s capability for in-situ defect 13 

identification and process control. Future work will focus on developing advanced re- 14 

al-time algorithms for automated defect prediction, adaptive process parameter adjust- 15 

ment and mechanical properties estimation. 16 
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