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Abstract: In nondestructive evaluation (NDE), pulsed phase thermography (PPT) is a 

commonly used technique which relies on phase contrast to detect defects. This study 

presents a methodology to investigate how changes in signal processing and geometrical 

parameters affect phase contrast. Analytically simulated thermal signals are used to eval-

uate the phase contrast for varying sample thicknesses and defect sizes, relative to a fixed 

defect depth. To address the issue of spectral leakage, phase contrasts are recorded using 

both rectangular and Hamming windows before transformation into the frequency do-

main. A Gaussian process regression (GPR) modelling scheme is used to observe the re-

lationship between phase contrast and geometrical parameters. The results suggest that 

both the choice of windowing function and geometrical factors can influence defect detec-

tion, offering insights to improve the reliability of PPT-based inspections. 

Keywords: nondestructive evaluation (NDE); pulsed phase thermography (PPT); defect 

characterisation; noise reduction; phase enhancement 

 

1. Introduction 

The use of active infrared thermography (AIT) in the field of nondestructive evalua-

tion (NDE) is becoming increasingly common due to its ability to rapidly detect subsur-

face defects. Among various AIT techniques, pulsed phase thermography (PPT) is a prom-

ising method to process raw thermograms by transforming the time domain data for each 

pixel into frequency domain, thereby enhancing the detection of deeper defects by reduc-

ing the effects of local surface emissivity variations and nonuniform heating [1]. One of 

the parameters of interest in PPT for defect characterisation is absolute phase contrast, 

which is evaluated across the frequency spectrum. This enables the detection of deeper 

defects at lower frequencies and shallower defects at higher ones. However, the efficacy 

of phase contrast is influenced by factors such as noise in raw thermal data and spectral 

leakage, especially when using a rectangular windowing function during Fourier trans-

formation [2]. 

Previous studies have shown that geometrical parameters such as test sample thick-

ness and defect size can cause discrepancies in detecting defects using pulsed thermogra-

phy [3]. Investigating the effect of these parameters can help modify models for more 
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accurate defect detection. In the present work, it is examined how variations in defect size 

and sample thickness – relative to a fixed defect depth – influence the resulting phase 

contrast. To account for the influence of spectral leakage, two separate studies are con-

ducted using different windowing functions. The following sections describe the method-

ology used to analyse the effect of these geometrical parameters on phase contrast, present 

the initial findings, and then conclude with some future objectives. 

2. Effect of geometrical parameters on phase contrast 

In this section, an overview is provided of the methodology adopted to observe the 

combined effect of two geometric parameters – sample thickness and defect size – on the 

phase contrast of defects. For this purpose, two parameters are defined: (a) the ratio of 

sample thickness to defect depth (s = L/d), and the ratio of defect size/diameter to defect 

depth (r = D/d). For analysis, ranges are defined for these two variables: s ranges from 1 

(representing a defect-free slab) to 10, and r ranges from 1 to 20. The defect depth is as-

sumed to be 1 mm. 

To generate a sample space of different pairs of values for s and r, the Latin hyper-

cube sampling (LHS) technique is used to evenly cover the specified ranges of these vari-

ables [4]. Figure 1 depicts the entire sample space created using the LHS strategy, where 

a wide spread of s and r over the defined ranges can be observed. Using this sample 

space, the absolute phase contrast corresponding to each pair of values is evaluated to 

create the dataset for input into the Gaussian process regression (GPR) model. 

 

Figure 1. Scatter plot of the sample space generated using the Latin hypercube sampling (LHS) 

method. 

2.1. Estimation of phase contrast 

The estimation of phase contrast for each set of variables is based on evaluating the 

temperature signals for regions above both the sound (reference) area and the defect. For 

this, analytical solutions are used for both the reference region and a defect of diameter 

D. If, at t = 0, an instantaneous heat pulse with energy density Q0 is provided on the 

surface of a homogenous plate of thickness L, containing a circular defect at a depth d, 

then the surface temperature changes on the front surface for the regions above both the 

reference and the defect can be approximated as [5]: 

∆Tr(0, t)  =
Q0

em√πt
[1 + ∑ Rne−(nL)2 αt⁄

∞

n=1

] (1) 

∆Td(0, t) =
Q0

em√πt
[1 + ∑ Rne−(nd)2 αt⁄

∞

n=1

. (1 − e−(D)2 16αt⁄ )] (2) 
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In the above equations, ∆Tr and ∆Td are surface temperature changes (at x = 0), 

α (= k/ρC) is the thermal diffusivity, and em(= √kρC) is the thermal effusivity with k, 

ρ and C being the thermal conductivity, density and specific of the material, respectively. 

The term R is the thermal wave reflection coefficient, which is set at 1 (air interface) for 

simplicity. To make the data more realistic, random noise with standard deviation of 25 

mK is added, considering the NETD of IR cameras. 

For the estimation of absolute phase contrast, a modified pulsed phase thermography 

algorithm, as proposed by Netzelmann and Müller [6], is adopted to reduce computation 

time and minimise noise at higher analysis frequencies. The implementation is based on 

the fast Fourier transform (FFT) algorithm and uses only the first component (after the DC 

component) at each transformation step. The algorithm is as follows: 

Fk
𝑚𝑜𝑑𝑃𝑃𝑇  = ∑ Tn𝑒−𝑖2𝜋𝑛/𝑅𝑜𝑢𝑛𝑑(𝑁 k⁄ )Round(N k⁄ )−1

n=0   k > 0 (3) 

After applying the algorithm, the transformed signal Fk is obtained. Using the im-

aginary part of equation (3), the phase delay of the transform is then calculated. Subse-

quently, the absolute phase contrast ∆∅ = ∅𝑑 − ∅𝑟  is computed, where ∅𝑑  and ∅𝑟  are 

the phase contrasts for the temperature signals obtained from equations (1) and (2), re-

spectively. 

2.2. Gaussian process regression (GPR) 

To analyse the effect of changes in sample thickness and defect diameter along with 

the influence of windowing function on phase contrast, analytically simulated tempera-

ture signals were generated for each pair of values in the LHS-based sample space under 

two conditions. In the first case, a rectangular window was used, whereas in the second, 

a Hamming window was used prior to transforming the data into the frequency domain. 

The phase contrast is then estimated using the PPT algorithm, as described by equation 

(3). For both cases, the absolute maximum phase contrast was considered for each (s, r) 

pair.  

After preparing the datasets, a Gaussian process regression (GPR) model is fitted us-

ing a squared exponential kernel function [7]. The developed regression model for each 

case was then used to predict phase contrast values over a test space of s and r to study 

their relationship with phase contrast.  

 

Figure 2. 3D surface plots of phase contrasts as a function of sample thickness to de-

fect depth (s) and defect size to defect depth (r) ratios using Gaussian process regression 

(GPR) for the case of (a) rectangular window; (b) Hamming window. 
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Figure 2a shows the surface plot of phase contrast as a function of s and r when a 

rectangular window is used. It can be observed that, for a given value of r, the phase 

contrast improves with increasing s. In other words, for a defect located at a certain depth 

in a thicker sample, the phase value becomes greater compared to the same defect present 

in a thinner sample. On the other hand, Figure 2b shows a different trend when a Ham-

ming window is used. In this case, the phase contrast decreases nonlinearly with decreas-

ing r until a certain point and then increases again as r approaches its minimum value. 

Another aspect is that for different defect sizes, the same phase contrast can be obtained, 

which can lead to misinterpretation in defect quantification. 

3. Conclusions 

For defect detection using PPT, phase contrast is affected by changes in both geomet-

rical and signal processing parameters. This study has analysed how simultaneous varia-

tions in sample thickness and defect diameter – relative to a fixed defect depth and win-

dowing function – impact the resulting phase contrast, thereby affecting the interpretation 

and reliability of defect detection. These results highlight the importance of adapting sig-

nal processing methods to consider the geometrical characteristics of the inspected sam-

ple. In future work, further investigation is planned into the behaviour of phase contrast 

under different processing parameters, including validation using experimentally col-

lected data. 
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