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Abstract: The analysis of tissue samples from 17 subjects clinically diagnosed with chronic 1

pancreatitis, ductal adenocarcinoma, or classified as controls has been collected and ana- 2

lyzed by Raman spectroscopy (RS). Such data are classified using a recent methodology 3

which combines machine learning with advanced Topological Data Analysis (TDA) tech- 4

niques, known as Topological Machine Learning (TML). A classification accuracy of 82% 5

was achieved following a cross-validation scheme with patient stratification, suggesting 6

that the combination of RS and topological data analysis holds significant potential for 7

distinguishing between the three diagnostic categories. When restricted to binary classifica- 8

tion (cancer vs. no cancer), performance increases to 88%. This approach offers a promising 9

and fast method to support clinical diagnoses, potentially improving diagnostic accuracy 10

and patient outcomes. 11

Keywords: Raman spectroscopy, Pancreas diseases, Topological machine learning, Topo- 12

logical data analysis 13

1. Introduction 14

Chronic pancreatitis (pc) and pancreatic ductal adenocarcinoma (dag) are severe 15

pancreatic disorders with significant global morbidity and mortality. Globally, pc affects 16

5–12 per 100, 000 individuals annually, while dag accounts for ∼ 495, 000 new cases each 17

year, with projections suggesting pancreatic cancer may become the second-leading cause 18

of cancer deaths by 2030 [1]. 19

Furthermore, current diagnostic suffers from various limitations: 20

· Imaging (CT/MRI): Conventional imaging methods have limited sensitivity for early 21

chronic pancreatitis and small pancreatic ductal adenocarcinoma, as current standards 22

lack universal criteria to detect early parenchymal changes and rely heavily on ductal 23

abnormalities captured by the Cambridge Classification, which misses subtle early-stage 24

features [2]; 25

· Biomarkers (CA 19-9): Despite its widespread clinical use, CA 19-9 exhibits stage- 26

dependent sensitivity in dag, with pooled sensitivity of 78.2% in all-stage analysis, but only 27

48% for localized T1 tumors, while specificity is compromised by false positives in 15− 20% 28

of benign biliary obstructions and undetectable in 5 − 10% of Lewis antigen-negative 29

individuals [3]; 30
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Figure 1. Fourier-transformed dataset showing the frequency components of the processed signals.

· Histopathology (EUS-FNA): Despite being the gold standard, EUS-guided FNA 31

histopathology is inherently invasive, carrying risks of pancreatitis (1–2%) and bleed- 32

ing, while exhibiting a 10–20% non-diagnostic rate due to insufficient cellularity, sampling 33

error, or obscuring blood—with accuracy further compromised in early-stage lesions (<1 34

cm) or fibrotic pancreatitis [4]. 35

Raman spectroscopy (RS) has emerged as a rapid, label-free, and minimally invasive 36

diagnostic tool capable of detecting molecular alterations in tissues and biofluids with high 37

specificity [5]. More importantly, in oncology, RS may enable discrimination of malignant 38

from benign conditions based on unique biomolecular signatures [6,7] or even provide 39

support for cancer grading when coupled with topological machine learning (TML) [8]. 40

Recently, RS and AI have been proposed as a diagnostic tool in the case of pancreatic cancer 41

[9]. 42

We propose to combine RS-based vibrational fingerprinting of pancreatic biopsies 43

with TML analysis to improve dag/pc classification. Our preliminary results show that 44

topological data analysis combined with machine learning may serve as a valuable compu- 45

tational approach for this diagnostic task. Further validation in larger cohorts is warranted 46

to standardize protocols and evaluate clinical translatability. 47

2. Materials and Methods 48

The study involved an ensemble of 14 µm-thick Formalin-Fixed and Paraffin- 49

Embedded (FFPE) sections of pancreatic solid biopsies corresponding to Normal Pancreas 50

(4 biopsies), Chronic Pancreatitis (3 biopsies), Ductal Adenocarcinoma of grade 2 (6 biop- 51

sies), and Ductal Adenocarcinoma of grade 3 (4 biopsies). For further details about the 52

fabrication process, the optical system, and the RS acquisition procedure we refer to [9]. 53

The result of the acquisition phase was a dataset of 2592 spectra, acquired in the spectral 54

interval between 400 and 1800 cm−1, with a spectral resolution of ∼ 2 cm−1. The spectra 55

were preprocessed according to a standard procedure, and all spectra from the same biopsy 56

with the same histotype were averaged, producing a dataset of 17 spectra. 57

Spectra were preprocessed by applying a baseline correction and smoothing as in [10], 58

and a Fourier transform. Figure 1 displays the dataset after FT. 59

The two grades of ductal adenocarcinoma previously collected have been merged into 60

a single category ’dag’. We highlight that the dataset is imbalanced, with 10 ’dag’ patients, 61

4 control ’norm’ patients, and 3 chronic pancreatitis ’pc’ patients. Subsequently, a binary 62

classification task with ’dag’ vs ’no dag’ division has been performed, in order to discern a 63



Version May 28, 2025 submitted to Journal Not Specified 3 of 4

cancer or non-cancer scenario. For this reason, in both settings, the baseline of the naive 64

classifier that classifies according to the most frequent class is 59%. The Fourier-transformed 65

dataset is processed using TML (see [11] for more information). The pipeline applies a 66

lower-star filtration to extract the Persistence Diagrams (PDs). Since the data consists of 67

1D spectra, the only non-trivial homology group is H0. The PDs are vectorized using 68

standard techniques from the literature (e.g. [12]). These vectors are then fed into one of 69

the following machine learning (ML) classifiers: a Support Vector Classifier (SVC), Random 70

Forest Classifier (RFC), or Ridge Classifier. The pipeline is evaluated using Leave-One-Out 71

cross-validation. 72

3. Results 73

To compare our method with others, we used ML to classify the average Raman 74

spectra and a CNN to classify the same dataset, but augmented in the same fashion as [13]. 75

For the 3-class classification, ML achieved an accuracy value of 0.58 (baseline accuracy 0.59) 76

while the CNN achieved 0.47 (baseline accuracy 0.33). For the binary classification, ML 77

(SVM) achieved an accuracy value of 0.76 (baseline accuracy 0.59), while the CNN achieved 78

0.65 (baseline acc. 0.5). Experiments showed that TML approach got the highest accuracy: 79

0.82 for the 3-class classification and 0.88 for the binary one (both using PL descriptors + a 80

Ridge classifier). We report the confusion matrices for the binary classification in Table 1 81

and for the 3-class classification in Table 2. 82

For the 3-class problem, the baseline accuracy is 0.59, matching the performance of the 83

traditional ML model. The CNN-based method, adapted from [13], is trained and tested on 84

the augmented dataset; thus, the baseline accuracy is 0.33 for the 3-class problem and 0.5 for 85

the binary problem. Despite the slightly different setting, our TML method outperforms a 86

state-of-the-art CNN specifically designed for spectral analysis, suggesting that topological 87

features capture more effectively discriminative patterns in spectra. 88

In binary classification, standard ML attains 0.76, while the CNN achieves 0.65, again 89

underperforming compared to TML (0.88). This aligns with prior observations where 90

conventional preprocessing or deep learning methods struggled with low SNRs. 91

3.1. CNN Implementation Details 92

We evaluated the CNN under a transfer learning regime: all but the last layer of a 93

pre-trained CNN [13] were frozen, and the model was fine-tuned on our augmented data 94

(epochs: 20; optimizer: Adam; learning rate: 3 × 10−4). After splitting the data into 70% 95

training and 30% testing, augmentation was performed via convex combinations of spectra 96

from the same class, ensuring no data leakage between training and testing sets. 97

Table 1. Binary confusion matrix

Predicted: DAG No DAG

True DAG 9 1
True No DAG 1 6

Table 2. 3-class confusion matrix

Predicted: DAG PC NORM

True DAG 9 0 1
True PC 0 3 0

True NORM 1 1 2

4. Conclusions 98

The results strongly suggest that Raman spectroscopy (RS) combined with topological 99

analysis may offer an effective approach to discriminate dag from chronic pancreatitis or 100

normal tissue in the 3-class setting, and dag from non-dag cases in the binary classification 101

task. Notably, our TML frameworkachieves robust performance while requiring minimal 102

parameter tuning or preprocessing steps. This makes the methodology particularly suitable 103

for potential integration into automated diagnostic pipelines, where consistency and ease 104

of use are critical for clinical adoption. If confirmed in larger studies, this RS-TML pipeline 105
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could evolve into a decision-support tool for the diagnosis of pancreatic cancer, potentially 106

reducing reliance on invasive procedures. 107
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