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Abstract: Cutaneous melanoma is an aggressive form of skin cancer and a leading cause 1

of cancer-related mortality. In this sense, Raman Spectroscopy (RS) could represent a 2

fast and effective method for melanoma-related diagnosis. We therefore introduced a 3

new method based on RS to distinguish Compound Naevi (CN) from Primary Cutaneous 4

Melanoma (PCM) from ex vivo solid biopsies. To this aim, integrating Confocal Raman 5

Micro-Spectroscopy (CRM) with four Machine Learning (ML) algorithms: Linear Discrimi- 6

nant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machine 7

(SVM), and Random Forest Classifier (RFC). We focused our attention on the comparison 8

between traditional pre-processing operations with Continuous Wavelet Transform (CWT). 9

In particular, CWT led to the maximum classification accuracy, which was of ∼89.0%, 10

which highlighted the method as promising in view of future implementations in devices 11

for everyday use. 12
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1. Introduction 14

Among the skin cancers, Cutaneous Melanoma (CM) turns out to be the most aggres- 15

sive and mortal form [1]. Today, the most accepted method for CM diagnosis is represented 16

by a dermoscopy-assisted clinical examination, followed by a histopathological assessment 17

[2]. These operations show several drawbacks, including the high percentage of false 18

positive cases after the initial examination, or strong similarities between histotypes of 19

different nature. Raman Spectroscopy (RS) has emerged as a highly promising technique to 20

address the aforementioned issues. This method measures the so-called Raman effect [3]. 21

RS potentially allows the distinction between complex samples that appear macroscopically 22

identical. In contrast to the conventional histopathological examination,RS can identify 23

melanoma within minutes [4]. Finally, due to its label-free character, RS is suitable either 24

for ex vivo or in vivo measurements. However, the large amount of information within a 25

single Raman spectrum hinders the qualitative interpretation of such experimental data. In 26

this sense, Machine Learning (ML) represents a complementary tool to rapidly read and 27

elaborate Raman data, to bring out the information of interest. In this paper, we built an 28

innovative approach, based on the coupling between Confocal Raman Microscopy (CRM) 29

and ML, i.e., Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), 30

Support Vector Machine (SVM), and Random Forest Classifier (RFC), as a diagnostic tool to 31

distinguish solid biopsies of Compound Naevus (CN) and Primary Cutaneous Melanoma 32
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(PCM). We explored two different approaches for the spectral pre-processing: the con- 33

ventional techniques, based on the fluorescence (baseline) removal, and the Continuous 34

Wavelet Transform (CWT), which allowed to deconvolve the baseline from the Raman 35

component. This last solution led to a significant increase in the classification accuracy, 36

which reached the maximum value of ∼ 89% for RFC. 37

2. Materials and Methods 38

The study involved 5µm-thick Formalin-fixed paraffin-embedded (FFPE) tissue sec- 39

tions of CN (12 biopsies) and PCM (18 biopsies), retrospectively retrieved from the Section 40

of Pathology at the Department of Health Sciences, University of Florence, and from the 41

Azienda USL Nord-Ovest Toscana, Livorno, Italy. We collected spectra in grids of resolu- 42

tion 25µm×25µm within the cutaneous lesions. A single spectrum was the result of the 43

arithmetic mean of 85 accumulations, with an acquisition time of 0.2 s per accumulation. 44

In addition, we restricted our analysis to the spectral interval between 400 and 1800 cm−1. 45

We retrieved between 150 and 200 spectra per biopsy, depending on the amount of tissue 46

available. To suppress effects related to spatial non-uniformities (voids or cracks), we 47

normalized the raw spectra by the integral value. In this study, we compared two different 48

pre-processing approaches: in one case, we removed the baseline, attributed to sample 49

fluorescence, through an Asymmetrically Reweighted Penalized Least Squares (ARPLS) 50

algorithm [5]. Subsequently, we suppressed the high-frequency noise with a Savitzky- 51

Golay (SG) algorithm (window: 17 points; polynomial order: 3). In a second approach, we 52

applied the Continuous Wavelet Transform (CWT) [6]. This operation can be conceived 53

as the convolution of the original signal x(t) with a series of wavelets {Ψ
( t−b

a
)
}, where 54

b is a traslational parameter and a > 0 is called scale. The aforementioned wavelets are 55

generated from the so-called mother wavelet Ψ
(
t
)
. In this work, we adopted the so-called 56

“Mexican hat” as the mother wavelet [7]. In addition, we adopted an array of Ns = 100 57

evenly spaced scales between 0.1 and 100. When applied to a single Raman spectrum, CWT 58

led to a vector of Ns × Np = 69300 components, where Np is the number of components 59

of the original spectrum. As we will explain in detail in the following, we focused our 60

attention on the problem of distinguishing CN and PCM. Since the number of biopsies 61

and, consequently, the number of spectra of CN and PCM was not the same, after having 62

performed the pre-processing operations, we applied a Synthetic Minority Oversampling 63

TEchnique (SMOTE) to obtain a balanced dataset of Nspectra = 5100 spectra [8]. Finally, we 64

applied PCA to the resulting spectra to reduce the system dimensionality, and employed 65

the first NPCA = 10 Principal Components (PCs) to feed the ML models. We tested the 66

classification performances of LDA, QDA, SVM (kernel: radial basis function, RBF), and 67

RFC. In particular, in SVM, we fixed the γ parameter of RBF to N−1
PCA and optimized the reg- 68

ularization parameter C based on the maximization of the classification accuracy through a 69

grid-like procedure employing an array of evenly speced values of C between 10−1 and 5. 70

Finally, in RFC, the trees of the forest were grown until reaching 100% training accuracy, 71

and each tree node was obtained by randomly choosing N
1
2
p among the features available 72

in the dataset and by selecting the feature leading to the maximum gain in terms of Gini 73

index. To build the whole forest, we optimized the number Nt of trees through a grid-like 74

procedure, adopting an array of evenly spaced integers between 50 and 150. We quantified 75

the classification performances with a 10-Fold Cross-validation, in terms of Accuracy (A), 76

Area Under ROC curve (AUROC), Recall (R), and Precision (P). 77

3. Results 78

In Fig. 1 we reported the averaged Raman signal associated with PCM and CN. The 79

most relevant detail observable from the qualitative analysis of this graph is the strong 80
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Figure 1. Averaged RS of PCM (red) and CN (black). Shaded areas represent the standard deviation.

overlap between the two signals, as testified by the averaged signal and the corresponding 81

standard deviation, which is represented here as shaded areas. This outcome can be seen 82

as further proof of the inadequacy of a qualitative approach aimed at distinguishing the 83

two classes, CN and PCM. The lack of distinct spectral bands with significant intensity 84

differences between CN and PCM indicates that a machine learning (ML) model’s clas- 85

sification power must depend on the combined statistical data from multiple spectral 86

components. This suggests that highly non-linear ML models are the best candidates for 87

high classification accuracy. This conclusion is supported by the performance of the models 88

in this study. Linear models like LDA, QDA, and SVM performed similarly, with accuracies 89

too low for reliability. In contrast, the highly non-linear Random Forest Classifier (RFC) 90

achieved the best results, with accuracy reaching approximately 80-89 91

Table 1. Classification performances of the ML classifiers, for the two pre-processing conditions
examined. Errors are determined as the standard deviation on the folds of the Cross-Validation.

Classifier Pre-
processing

A (%) AUROC
(%)

R (%) P (%)

LDA CWT 63.2 ± 2.6 67.3 ± 3.6 63.2 ± 2.6 63.2 ± 2.5

LDA ARPLS+SG 63.0 ± 2.6 65.1 ± 2.7 63.0 ± 2.6 63.4 ± 2.7

QDA CWT 55.0 ± 3.2 55.3 ± 4.9 55.0 ± 3.2 58.2 ± 5.1

QDA ARPLS+SG 49.9 ± 0.1 50.0 ± 0.1 49.9 ± 0.1 24.9 ± 0.1

SVM CWT 55.8 ± 3.5 66.3 ± 4.1 55.8 ± 3.4 61.3 ± 6.1

SVM ARPLS+SG 49.9 ± 0.1 60.9 ± 3.9 49.9 ± 0.1 24.9 ± 0.1

RFC CWT 89.1 ± 1.7 96.0 ± 1.1 89.1.8 ± 1.7 89.1 ± 1.7

RFC ARPLS+SG 79.6 ± 1.9 87.9 ± 1.3 79.6 ± 1.9 79.7 ± 1.9

The second interesting outcome of this analysis comes from the comparison between 92

the two pre-processing conditions adopted in this paper. The conventional condition 93

ARPLS+SG, based on the baseline removal, led to the worst classification performances, 94

probably indicating that the baseline component, attributable to the sample fluorescence, 95

contains precious information for the correct classification. On the other hand, CWT, which 96

doesn’t involve signal removal, allows for maintaining the baseline contribution, resulting 97

in better performance. Despite this interesting result, CWT led to the drawback of dramati- 98

cally increasing the number of features employed to feed the ML models. Although this 99

effect can be attenuated by applying PCA, it turns out to be time-consuming, with potential 100

negative consequences in terms of practical use and/or the occurrence of overfitting. In 101

our case, while ARPLS+SG required ∼ 10 s to be accomplished, CWT required ∼ 59 s. This 102

aspect must be taken into account in view of the future applications of this technology in 103
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engineered devices, where requirements such as high diagnostic speed and reliability are 104

mandatory. 105

4. Conclusions 106

In this preliminary investigation, we explored the possibility of employing the Confo- 107

cal Raman Microscopy coupled with Machine Learning to diagnose Cutaneous Melanoma 108

from solid biopsies, i.e., to distinguish Primary Cutaneous Melanoma from Compound 109

Naevus. To this aim, we employed the resulting Raman spectra as examples to build 110

ML models based on different principles. Furthermore, we compared the traditional pre- 111

processing operations, based on the removal of the baseline filtering, with an innovative 112

approach, i.e., the application of the Continuous Wavelet transform (CWT). The results 113

of such an investigation highlighted how Random Forest Classifier led to the maximum 114

classification accuracy, with values reaching ∼ 89%, acting as a good candidate for future 115

employments in engineered devices. Among the most promising routes, we mention the 116

employment in an ex vivo fashion to assist the histopathologists during the diagnostic 117

process, or for the realization of probes for non-invasive in vivo diagnosis. Finally, the 118

classification performances were maximized with CWT, indicating that the signal baseline, 119

usually considered an undesired contribution to the measured signal, carries valuable 120

information for the diagnostic task. 121
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