The 2nd International Electronic Conference on Land

04-05 September 2025 | Online

Rainfall-Runoff Simulation Using HEC-HMS and GIS for Climate-Resilient Watershed Management: A Case Study of the Mangla Watershed, Pakistan

Saffi ur Rehman^{1*}, Tingting Chang¹, Muhammad Zaman²

¹College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China ²Department of Irrigation and Drainage, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad (UAF) *Corresponding Author's Email: <u>safi.rehman.mkw@gmail.com</u>

INTRODUCTION & AIM

Water scarcity challenges:

- Growing demand (agriculture, energy, households, industry) outpaces supply, threatening sustainability.
- Hydrological modeling is critical for predicting availability and managing resources.

Key tools:

- **HEC-HMS** (GIS-integrated, free, robust) simulates runoff using:
 - SCS Curve Number (runoff estimation)
 - SCS Unit Hydrograph (rainfall-to-runoff)
 - Muskingum (channel routing).

Study focus:

- Simulate Mangla Watershed runoff (1991–2000 for calibration, 2000-2010 for validation).
- Enhance hydrological assessments for sustainable water management.

METHOD

The methodology used in hydrological modelling can be divided into the following major tasks:

- DEM Data preprocessing in HEC-HMS, such as fill sink, flow direction, flow accumulation, identification of streams, and the delineation of the catchment.
- Model parameters calculation like (Initial Abstraction, Curve Number, Lag Time, Recession Constant, Muskingum Constant K and X)
- Input the Model parameters and Rainfall data to run the Model.
- Input the observed flow data to calibrate the model. (We used a manual calibration method)
- Run the model for different years to validate the model.

RESULTS & DISCUSSION

Model Calibration (1991–2000)

- Adjusted CN, lag time, Muskingum K/X to match observed vs. simulated hydrographs (Figure 4a).
- Calibrated CN reduced by $\sim 35\%$ (e.g., Subbasin-1: $84.2 \rightarrow 53.9$), improving runoff accuracy.

Statistical Performance:

- Nash-Sutcliffe Efficiency (NSE): 0.919 (Excellent: >0.75)
- PBIAS: -13.53% (Good: $|\pm 15\%|$)

Model Validation (2001–2010)

- Validated with independent data; hydrographs showed strong correlation (Figure 4b).
- Improved Metrics:
 - NSE: 0.945 (Near-perfect fit)
 - PBIAS: -2.91% (Minimal bias)

CONCLUSION

The results of the study suggested that the hydrological modeling using HEC-HMS for the Mangla Watershed is applicable for future work on rainfall-based runoff modeling, and to reduce the impact of floods, it is crucial to have strong flood protection measures and emergency response strategies.

FUTURE WORK / REFERENCES

- Multi-model CMIP6 analysis → Reduce climate uncertainty.
- ML-enhanced hydrology → Boost flood prediction.
- Land use + climate coupling \rightarrow Realistic future scenarios.
- Policy tools → Interactive dashboards for stakeholders.

FIGURES AND TABLES

Figure 1: Study area map of Mangla Watershed

Table 1: Type of datasets used in this study, along with sources

Digital Elevation Data Water and Power Development Daily Figure 2: DEM Processing Hydrological data Authority (WAPDA)

Sink "Outlet" Results for Run "Calibrati

Figure 3: Curve Number Map with LULC and Soil Hydrological Group Map

Project: Mangla Simulation Run: Calibration

Sr No. Model Method Equation **Parameter Required (Unit)** Initial Abstraction, Curve Number, SCS Curve Number Method Loss and Impervious Area (%) $Lag = \frac{(S+1)^{0.7}L^{0.8}}{1900 \times Y^{0.5}} (2)$ Transform SCS Unit Hydrograph Lag Time (min) 2 Reach Routing Muskingum Muskingum Constant K and X

- (1) A_i is the area (Km²) and CN_i is the curve number
- (2) S is potential maximum retention = (25400/CN)-254 (mm), Lag = Basin Lag time (hr), L = longest flow path length (ft), and Y = Bassin Slop (%).

Table 2: Input Parameters of HEC-HMS Rainfall-based Runoff Model.

Figure 4: Statistical Parameters for (a) Calibration (1990-2000) Figure 4: Hydrograph for (a) Calibration (1990-2000) and (b) Validation (2000-2010) and (b) Validation (2000-2010) Periods