Underground Coal Gasification in Abandoned Coal Seam Gas Blocks

Presented by

Mojibul Sajjad and

Mohammad G. Rasul

- 1. Postgraduate Research Student, CQUniversity, Rockhampton, Qld. Australia
- 2. Associate Professor, School of Engineering and Technology, CQUniversity, Rockhampton, Queensland 4702, Australia.

niversity

Presentation Outline

- ☐ Introduction
- ☐ UCG in Global Perspective
- ☐ UCG in Australia
- ☐ Commitment for Sustainable Engineering
- ☐ Identified Issues
- ☐ Optimization; A new Approach
- ☐ Conclusion and Recommendations

Introduction

- ☐ Coal is the major source of Electricity generation.
 - I. Global context- 40%
 - II. Australia- 80%
- Coal extraction methods (conventional method)
 - Underground mining
 - Open cast mining
- ☐ Unconventional Coal exploitation (Deeper Position)
 - Coal Seam Gas (95-97% CH4) extraction
 - Underground Coal Gasification

Coal \rightarrow CO₂, CO, NO_x, SO_x, Fly ash, Bottom ash etc.

Global trend → Clean Coal Technology

Coal Seam Gas Extraction and GHG Emission

Coal Seam Gas

- → Very Low GHG emission fuel.
- → Minimum Recovery of coal resource (~5%).
- → Affects ground water .
- → Stimulation activity such as coal body fracturing.
- → Huge capital investment.

"Work over" of Production well based on well head gas flow rate.

Underground Coal Gasification; An Overview

Underground Coal Gasification (UCG)

- Converted coal in-situ to a "Syngas"
- Energy recovery from coal (~70%)
- Fly ash, Bottom ash left underground
- Demonstrated success in global context.
- Subsidence effect minor (deeper coal)
- Aquifer contamination insignificant for deep seated coal body.

Global trend USA, Canada, Australia, Europe, China, South Africa, Pakistan and others.

Underground Coal Gasification Process

1. Oxidation/Combustion

$$2C + O_2 \rightarrow 2CO$$

$$C + O_2 \rightarrow CO_2$$

2. Gasification

$$C + H_2O \rightarrow CO + H_2$$

 $C + 2H_2O \rightarrow CO_2 + 2H_2$
 $CO + H_2O \rightarrow CO_2 + H_2$
 $C + 2H_2 \rightarrow CH_4$

3. Pyrolysis/devolatization

H₂, CH₄, N₂, Tar, Solid Char

UGC in Australia "Western world's leading practice in UCG"

3 pilot projects conducted in Queensland, Australia as:
Kingaroy Project by Cougar Energy,
Chinchilla Project by Linc Energy,
Another project near Dalby run by Carbon Energy (associated with CSIRO).

Chinchilla Project, A Ground Breaking Achievement of UCG

- ☐ Coal seam depth at 140 m and thickness 10 m, air injection as oxidant.
- □ Over than 35,000 tons of coals were gasified (output pressure apx. 10 bar, temperature 300° C 100% availability, 1999-2002).
- □ 95% recovery of the coal resource. (continued)

UGC in Australia "Western world's leading practice in UCG"

- Operated 5 successive UCG activity.Run the GTL (gas to liquid) plant.
- ☐ Success for controlling process & shut down practices.
- ☐ Expertise development & skills for commercialization of UCG technology.
- ☐ Scientifically validated numerical results.
- ☐ Expands global business, acquired primitive IP share of this technology in Uzbek plant.

- ☐ Cougar Energy's plant shut down due to aquifer contamination with Benzene.
- Queensland State government set goal before commercial operations by Linc and Carbon Energy until "demonstrate safe decommissioning by extinguishing the fires, shutting off reactions and preventing groundwater contamination"
- ☐ Entrepreneurs are planning to close their business in Australia.

Commitment for Sustainable Engineering

Economic Modelling of UCG ; A Sustainable

Technology

- ☐ IRR and Pay Back Period.
- ☐ Environmental issues.
- ☐ Clean coal technology.
- ☐ GHG emission control.
- Post operation CCS at coal cavity.
- ☐ Best practices of engineering.

Identified Issues ; UCG Activity in Depleted CSG Blocks

☐ Coal deposits at **deeper position** in Queensland, are ideal for permanent CO₂ sequestration.

University

Optimization; A New Approach for Uneconomic Coal Deposite

Optimization for

- Maximum resource extraction.
- Best practices of UCG technology.
- Cost effective Power Generation.
- Integrated Engineering approach for CSG+UCG+IGCC+CCS within in-situ coal formation.
- "H₂" separation from Syngas for
 FCV as Zero emission fuel .

Conclusion and Recommendations

☐ An engineering approach for Eco-friendly and cost effective exploitation technique for Australian deep seated coal deposits. ☐ Seeking provision for UCG operation in the depleted CSG blocks ☐ Carbon sequestration after event exploitation ☐ H₂ separation for Fuel Cell Vehicle(FCV). ☐ Joint Collaboration with global partners.

References

- Walker, L. Underground Coal gasification: A Clean Coal Technology Ready for Development. The Australian Coal Review 1999.
- Blinderman, M.S. and R.M. Jones, The Chinchilla IGCC Project to Date: Underground Coal Gasification and Environment, in 2002 Gasification Technologies Conference, .
 2002: San Francisco, USA.
- Gasification Technologies Council, G.T. Council, Editor. 2012, www.gasfication.org.
- Bhutto, A.W., A. Bazmi, and G. Zahedi, *Underground Coal Gasification: From Fundamentals to Application.* Progress in Energy and Combustion Science 2013.
 39: p. 189 -214.
- Moran, P.C., P.J.d. Costa, and E.P.C. Cuff, Independent Scientific Panel Report on Underground Coal Gasification Pilot Trials. 2013, Queensland Independent Scientific Panel for Underground Coal Gasification (ISP): Queensland, Australia.
- Kempka, D.I.T., B.A.N. Nakaten, and e. al. Economic Viability of In-situ Coal Gasification with Downstream CO₂ Storage.
- Esterle, J. Introduction to Coal Geology for Gas Reservoir Characte Lation

Thank You

CRICOS PROVIDER CODES: QLD 00219C, NSW 01315F, VIC 01624D

Question?

CRICOS PROVIDER CODES: QLD 00219C, NSW 01315F, VIC 01624D