

The 2nd International Online Conference on Toxics

08-10 September 2025 | Online

From bacteria to fish: ecotoxicological insights into the bioinsecticide Spinosad

Sara Rodrigues^{1*} (sara.rodrigues@fc.up.pt), Sara C. Antunes²

¹ CIMAR/CIIMAR LA - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.

² FCUP - Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.

INTRODUCTION

- **Natural bioinsecticide** derived from the actinobacterium *S. spinosa*^[1] and widely used in agriculture;
- High selectivity toward target pests;
- Low environmental persistence^[1].
- effects on non-target aquatic species^[2].

AIM

Its increasing application raises concerns about potential toxic

To evaluate the acute toxicity and sub-individual effects of Spinosad (SPI) across multiple aquatic species, representing different trophic levels.

METHODS [3]

Inhibition of bioluminescence **assay** (30 min; 0.59 – 150 mg/L)

Growth inhibition assay (3 days; 2.52 - 6.14 mg/L)

Sub-individual evaluation

Total Chlorophyll and Carotenoids contents

Acute immobilization assay (48 h; 0.00066 - 1 mg/L)

Sub-individual evaluation CAT and **TBARS**

GSTs activities

Danio rerio [7]

Fish embryo acute toxicity **test** (96 h; 0.625 – 10 mg/L)

Sub-individual evaluation

TBARS

CAT and **GSTs** activities

levels

ш

ENVIRONMENTAL HAZARD CLASSIFICATION [8]

Toxicity score - EU-Directive 93/677/ECC **EC**₅₀ (mg/L)

Harmful Non toxic Toxic Very toxic > 100 $10 - 100 \quad 1 - 10$

EC₅₀ - Median effective concentration; **NOEC** - No Observed Effect Concentration; **LOEC** - Lowest Observed Effect Concentration

- High toxicity of SPI to aquatic invertebrates namely D. magna;
- High potential to disrupt key physiological processes in fish at moderate concentrations;
- More environmental risk assessments of SPI are essential, considering chronic toxicity and sublethal responses, particularly under realistic exposure scenarios to guarantee the health status of aquatic ecosystems.

RESULTS & DISCUSSION

A. fischeri (bioluminescence) TOXICIT $EC_{50} = 105.66 \text{ mg/L}$ NON TOXIC (74.83 - 136.49)**D.** magna (swimming behavior)

 $EC_{50} = 0.018 \text{ mg/L}$ **VERY TOXIC** (0.001 - 0.029)**Sensitivity Ranking to SPI**

Lower EC_{50} = Higher Sensitivity

R. subcapitata (growth) $EC_{50} = 3.93 \text{ mg/L}$ **TOXIC** (3.53 - 4.34)

D. rerio (growth)

Pericardial edema

Carotenoids

content

<u>4.54</u>

4.11

7.5 17.5

5

SPI caused an impairment of the photosynthetic apparatus, which may be related to oxidative stress or pigment biosynthesis, compromising the photosynthetic efficiency and physiological **status** of *R. subcapitata*.

	D. rerio				

n E vity	SPI (mg/L)	CAT activity	GSTs activity	TBARS levels	AChE activity
02	LOEC	10.00	2.50	-	2.50
41	NOEC	5.00	1.25	10.00	1.25

D. exhibited magna biochemical responses at low concentrations SPI, indicating high sensitivity:

antioxidant activation mechanisms and later a phase of the detoxification, pointing to the onset of oxidative lipid stress; peroxidation; early neurotoxic effects.

SPI's toxicity - effects at environmentally relevant concentrations (recommended usage dose for field applications $= 500 \,\mu g/L)^{[2]}$

D. rerio exhibited measurable biochemical responses to SPI, at moderate concentrations:

induction antioxidant defenses and activation of detoxification phase pathways, pointing to the onset of oxidative stress; no oxidative damage under conditions; tested the possible neurotoxic effects.

SPI's sub-lethal alterations detoxification and neural dysfunctions.

BIOMARKER

and

BIOASSAY