

P.PORTO

ASSESSMENT OF ENDOCRINE DISRUPTING CHEMICALS IN COMPANION ANIMALS

Inês Boaventura¹, Sara Sousa²*, Tiago Bordeira Gaspar^{1,3,4,5}, Inês Borges⁴, Cristina Delerue-Matos², Paula Soares⁵, Valentina F. Domingues²

- ¹Escola Universitária Vasco da Gama, Coimbra, Portugal;
- ²REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal;
- ³Centro de Investigação Vasco da Gama (CIVG), Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama, Coimbra, Portugal;
- ⁴CEDIVET-Laboratório Clínico Veterinário, Leça do Balio, Portugal;
- ⁵i3S-Instituto de Investigação e Inovação em Saúde, Porto; IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- * sirds@isep.ipp.pt


INTRODUCTION

Endocrine disrupting chemicals (EDC) can interfere with hormone signalling, posing a significant risk to animal and human health. Usually, EDC are environmental pollutants and, due to their lipophilic nature, can accumulate in fat tissues, leading to chronic exposure and serious health issues such as endocrine-related neoplasia [1]. Companion animals, particularly dogs and cats, are frequently exposed to higher exposure rates to EDC than their owners, owing to their proximity to the ground and behaviours. Despite increasing concern regarding EDC exposure, most biomonitoring studies to date focused on humans and livestock, with limited attention given to pets [2]. This study aimed to assess the presence of EDCs, namely synthetic musks (SMs), organochlorine and organophosphate pesticides (OCPs and OPPs) in the adipose tissue of female dogs and cats diagnosed with mammary neoplasms.

EXPERIMENTAL

Adipose tissue was collected from animals with and without neoplasia (i.e. control group) at veterinary care centres across the North of Portugal, along clinical and pathological data. A broad range of persistent and emerging EDC were isolated with ultrasound assisted extraction (UAE) method and quantified in a triple quadrupole gas chromatograph mass spectrometer (GC-MS/MS) (Figure 1) [3]. Take upper layer

RESULTS

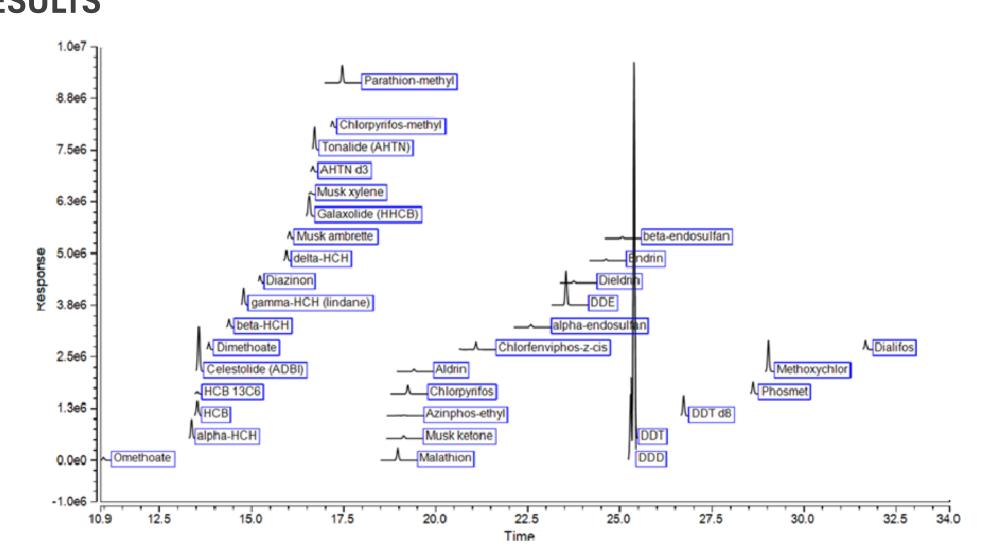


Figure 2 – GC-MS/MS chromatogram for EDC standard mixture.

CONCLUSIONS

SMs, OCPs and OPPs were detected in the adipose tissue of female dogs and cats. Galaxolide and tonalide are found in cosmetic and household product were found in all the samples analysed and despite being long banned the persistent pesticides HCB, y-HCH and DDE were found in more than 90%. Moreover, although no significant differences were observed between animals diagnosed with mammary neoplasms and the control group. Yet, this preliminary study shows that companion animals are exposed to an assorted of EDC highlighting the need of more biomonitoring studies.

Table 1 – Average concentrations (µg/g) of EDC in adipose tissue of female dogs and cats diagnosed with mammary neoplasms (cases) and controls.

		Female dog					Female cat				
	EDC	Control (n=10) Cases (n=13)					Control (n=10) Cases (n=8)				
	LDO	Average	SD	Average	SD	- t test p	Average	SD	Average	SD	t test p
OPP	Omethoate	nd		nd			nd		nd		
	Dimethoate	nd		nd			nd		nd		
	Diazinon	nd		nd			nd		nd		
	Chlorpyrifos-methyl	nd		nd			nd		nd		
	Parathion-methyl	nd		nd			nd		nd		
	Malathion	nd		nd			nd		nd		
	Azinphos-ethyl	nd		nd			nd		nd		
	Chlorpyrifos	<0.004		nd			<0.004		<0.004		
	Chlorfenviphos-z-cis	nd		nd			nd		nd		
	Phosmet	nd		nd			nd		nd		
	Dialifos	nd		nd			nd		nd		
	ΣOPPs	<0.004		nd		-	<0.004		<0.004		-
ОСР	 α-HCH	nd		nd			nd		nd		
	HCB	<0.006		<0.006			<0.006		<0.006		
	 β-HCH	<0.008		<0.008			nd		<0.008		
	ү-НСН	<0.006		<0.006			<0.006		<0.006		
	ζ-HCH	nd		nd			nd		nd		
	Aldrin	nd		nd			nd		nd		
	α-endosulfan	<0.004		<0.004			<0.004		nd		
	p,p'-DDE	<0.002		<0.002			0.017	0.001	0.039	0.007	
	Dieldrin	nd		nd			nd		nd		
	β- endosulfan	nd		nd			nd		nd		
	Endrin	nd		nd			nd		nd		
	p,p'-DDD	nd		nd			nd		nd		
	o,p'-DDT	nd		nd			nd		nd		
	Methoxychlor	nd		nd			nd		nd		
	∑OCPs	0.010	0.005	0.008	0.003	0.32	0.02	0.02	0.04	0.03	0.06
SM	Celestolide	nd		nd			nd		nd		
	Musk ambrette	nd		nd			nd		nd		
	Galaxolide	0.17	0.06	0.20	0.05		0.29	80.0	0.21	0.05	
	Musk xylene	nd		nd			nd		nd		
	Tonalide	<0.006		<0.006			<0.006		<0.006		
	Musk ketone	nd		nd			nd		nd		
	ΣSMs	0.18	0.10	0.18	0.15	0.99	0.21	0.18	0.22	0.14	0.94

nd – not detected; SD – standard deviation

References

[1] S.Sousa, M.L. Maia, et al, Sci. Total Environ. 806(2022) 150922

[2] P.Pocar, V. Grieco, et al, Animals 13 (2023) 378

[3] S.Sousa, D.Pestana, et al, Sci.TotalEnviron. 894(2023)165015

Acknowledgements

The authors thank all the Portuguese veterinary medical care centers (CAMV) for the collection of biological samples and to all tutors that participate in this study. This work received support and help from FCT/MCTES(LA/P/0008/2020-DOI 10.54499/LA/P/0008/2020, UIDP/50006/2020-DOI10.54499/UIDP/50006/2020 and UIDB/50006/2020-DOI 10.54499/UIDB/50006/2020), through national funds.

INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO Rua Dr. António Bernardino de Almeida, 431 • 4200-072 Porto, Portugal www.requimte.pt/laqv • www.graq.isep.ipp.pt

08-10 September 2025 | Online