Electroanalysis of Dopamine Using Polydopamine Functionalized Reduced Graphene Oxide-Gold Nanocomposite

Li Fu, Guosong Lai and Aimin Yu

Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology
College of Chemical and Environmental Engineering, Hubei Normal University
OUTLINE

• Introduction
• Method
• Characterizations
• Determination of Dopamine
• Summary
Introduction

Graphene

- Two-dimensional monolayer of graphite
- Extraordinary mechanical strength, large specific surface area and high conductivity
- Excellent platform for loading nanoparticles
Introduction

Why Polydopamine and Gold?

- Reduce agent for reduction of grapheme oxide
- Increase dispersity of reduced grapheme oxide
- Improved the electronic conductivity
- Increase surface area for electrocatalytic activity
Method

PDA-RGO nanocomposite:

Dopamine self-polymerization in Tris-buffer for 24 h

PDA-RGO/Au nanocomposite:

Electrodeposition
Characterizations

- FTIR spectra confirmed the successful functionalization of PDA
- FTIR also confirmed the reduction of GO
- UV-vis spectra confirmed the reduction of GO
Morphology
Electrochemical Behavior Towards Oxidation of DA

- PDA-RGO/Au modified electrode showed the best electrocatalytic performance towards oxidation of DA
The oxidation peak currents showed a linear relationship with DA concentrations from 0.05-1 mM.

Linear regression equation:

\[\text{as } I_{pa} (\mu A) = 9.8684 \, \text{c (mM)} + 2.2215 \]
Selectivity

- Excellent selectivity towards oxidation of DA
Summary

- PDA-RGO/Au nanocomposites were prepared via wet chemical method combined with electrodeposition.
- FTIR and UV-vis spectroscopy confirmed the reduction of GO and PDA surface functionalization.
- PDA-RGO/Au modified GCE exhibits an excellent electrocatalytic activity towards oxidation of DA.