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Classification algorithms are proposed based on information entropy. It is studied the molecular 

classification of anti-human immunodeficiency virus thiocarbamates. The 62 thiocarbamates (TCs) are 

classified by their structural chemical properties. Many classification algorithms are based on 

information entropy. An excessive number of results appear compatible with the data and suffer 

combinatorial explosion. However, after the equipartition conjecture  one has a selection criterion. 

According to this conjecture, the best configuration of a flowsheet is that in which entropy production is 

most uniformly distributed. The structural elements  of an inhibitor can be ranked  according to their 

inhibitory activity in the order: B1/2 > R > R1 > R2 substitution. In TC 17, B1/2 = B1, R = 4-CH3 and 

R1 = R2 = H; its associated vector is unary. The TC 17 is selected as a reference. In some TCs B1/2 = B1, 

in some others B1/2 = B2. The analysis is in qualitative agreement with other classification taken as good  

based on k-means clustering. Program MolClas is a simple, reliable, efficient and fast procedure for 

molecular classification, based on the equipartition conjecture of entropy production. The structural 

elements allow the periodic classification of the TCs. A validation is performed with an external 

property, cytoprotection activity, not used in the development of the table. 
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Nucleoside (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs) targeting the human 

immunodeficiency virus type 1 (HIV-1) encoded reverse transcriptase (RT)1 must be proved effective in 

treating the HIV infection and acquired immunodeficiency syndrome (AIDS).2 The NNRTIs bind to an 

allosteric site  (non-nucleoside binding site, NNBS) largely contained within the RT p66 subunit, some 

10Å from the polymerase active site.3–14 Despite their chemical diversity, NNRTIs interact with the 

NNBS showing a similar three-dimensional arrangement, the so-called butterfly-like conformation  

typical of first-generation NNRTIs,15 as demonstrated by X-ray crystallography of HIV-1 RT–NNRTI 

complexes.16–24 However, the relatively unconserved amino-acid sequence of the NNBS favours the 

rapid selection of NNRTI-resistant viruses, both in vitro  and in vivo.25 As a result of single-point 

mutations in the NNBS,26 first-generation NNRTIs, e.g., nevirapine and delavirdine, show a loss of 

potency of several orders of magnitude. In contrast, second-generation NNRTIs, e.g., efavirenz27 and 

some thiocarboxanilide28 and quinoxaline29 derivatives, result in minor losses of activity against variants 

carrying either single or double NNRTI resistance mutations. Nevertheless, the fact that cross-resistance 

extends to the whole NNRTI class calls for development of new agents capable of inhibiting clinically 

relevant NNRTI-resistant mutants. 

Ranise et al. described a novel class of NNRTIs, i.e., O-substituted N-acyl-N-arylthiocarbamates 

(ATCs)30 structurally related to N-phenethyl-N’-thiazolylthiourea (PETT) derivatives.31,32 Among the 

ATCs, the phthalimidoethyl-ATCs proved to be potent inhibitors of the multiplication of wild-type 

(WT) HIV-1, significantly active against Y181C mutants but ineffective against K103R mutants. The 

thiocarbamate (TC) UC-38 was selected as an anti-HIV-1 agent in the early 1990s for pre-clinical 

development.33 Ranise et al. described structure-based ligand design, synthetic strategy and structure–

activity relationship (SAR) studies that led to the identification of TCs, a novel class of NNRTIs, 

isosteres of phenethylthiazolylthiourea (PETT) derivatives.34 Assuming as a lead compound 

O-[2-(phthalimido)ethyl]-phenylthiocarbamate, one of the precursors of the previously described ATCs, 

they prepared two targeted solution-phase TC libraries by parallel synthesis. The lead optimization 

strategy led to nine para-substituted TCs, which were active against WT HIV-1 in MT-4-based assays at 



3 

nanomolar concentrations (50% effective concentration, EC50, range: 0.04–0.01μM). The most potent 

congener (EC50 = 0.01μM) bears a methyl group at position 4 of the phthalimide moiety and a nitro 

group at the para  position of the N-phenyl ring. Most of the TCs showed good selectivity indices, since 

no cytotoxic effect was detected at concentrations as high as 100μM. Five TCs significantly reduced the 

multiplication of the Y181C mutant, but they were inactive against K103R and K103N + Y181C 

mutants. Nevertheless, the fold increase in resistance of a TC was not greater than that of efavirenz 

against the K103R mutant in enzyme assays. Their docking model predictions were consistent with in 

vitro  biological assays of the anti-HIV-1 activity of the TCs and related synthesized compounds. The 

k-means clustering of compounds using standardized descriptor matrix was taken as reference 

classification. The TCs are classified in three classes: class 1 (33–39,41–51,53,54), class 2 (1–3,5–

9,11,13,15–19,22–28,30–32,56,58–61) and class 3 (4,10,12,14,20,21,29,40,52,55,57,62), cf. Figs. 1 and 

2. 
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Fig. 1. Reference dendrogram of thiocarbamates with anti-HIV cycloprotection activity at level b1. 
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Fig. 2. Reference radial tree of thiocarbamates with anti-HIV cytoprotection activity. 
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A simple computerized algorithm, useful for establishing a relationship between chemical structures 

and their biological activities or significance, is proposed and exemplified.35,36 The starting point is to 

use an informational or configurational entropy for pattern recognition purposes. The entropy is 

formulated on the basis of a matrix of similarity  between two biochemical species. As entropy is weakly 

discriminating for classification purposes, the more powerful concepts of entropy production  and its 

equipartition conjecture  are introduced.37 In earlier publications, the periodic classifications of local 

anaesthetics38 and HIV inhibitors39–41 were analyzed. The aim of the present report is to develop the 

learning potentialities of the code and, since molecules are more naturally described via  a varying size 

structured representation, to study general approaches to the processing of structured information. A 

second goal is to present a periodic classification of the TCs. A further objective is to carry out a 

validation of the periodic table with an external property, cytoprotection activity, not used in the 

development of the table. 

2. Classification Algorithm 

The grouping algorithm  uses the stabilized  matrix of similarity, obtained by applying the max–min 

composition rule o  defined by: 

RoS( )ij = maxk mink rik ,skj( )[ ]         (2) 

where R = [rij] and S = [sij] are matrices of the same type, and (RoS)ij the (i,j)-th  element of the matrix 

RoS.42–45 

It can be shown that when applying the max–min composition rule iteratively, so that 

R(n+1) = R(n) o R, there exists an integer n  such that: R(n) = R(n+1) = … The resulting matrix R(n) is 

called the stabilized similarity matrix. The importance of stabilization lies in the fact that in the 

classification process, it will generate a partition into disjoint classes. From now on it is understood that 

the stabilized matrix is used and designated by R(n) = [rij(n)]. The grouping rule  is the following: i  and 



7 

j  are assigned to the same class if rij(n) ≥ b. The class of i noted    
) 
i  is the set of species j  that satisfies the 

rule rij(n) ≥ b. The matrix of classes is: 

  

) 
R n( ) = ) r ) 

i 
) 
j [ ]= maxs,t rst( )   (s ∈

) 
i ,  t ∈

) 
j )        (3) 

where s  stands for any index of a species belonging to the class    
) 
i  (similarly for t  and     

) 
j ). Rule (3) 

means finding the largest similarity index between species of two different classes. 

3. Information Entropy 

In information theory, the information entropy h  measures the surprise that the source emitting the 

sequences can give.46,47 Consider the use of a qualitative spot test to determine the presence of iron in a 

water sample. Without any sample history the testing analyst must begin by assuming that the two 

outcomes, viz. 0 (Fe absent), and 1 (Fe present), are equiprobable with probabilities 1/2. When up to two 

metals may be present in the sample solution (e.g., Fe or Ni or both), there are four possible outcomes, 

ranging from neither (0, 0) to both being present (1, 1) with equal probabilities 1/4. Which of these four 

possibilities turns up can be determined using two tests, each having two observable states. Similarly 

with three elements there are eight possibilities each with a probability of 1/8 = 1/23. Three tests are 

needed to resolve the question. The following pattern clearly relates the uncertainty and the information 

needed to resolve it. The number of possibilities is expressed to the power of 2. The power to which 2 

must be raised to give the number of possibilities N  is defined as the logarithm to base 2 of that number. 

Information and uncertainty can be defined, quantitatively, in terms of the logarithm to base 2 of the 

number of possible analytical outcomes: I = H = log2 N, where I  indicates the amount of information, 

and H  the amount of uncertainty. The initial uncertainty can also be defined in terms of the probability 

of the occurrence of each outcome; e.g., by referring to the probabilities above the following definition 

can be written: I = H = log2 N = log2 1/p = –log2 p, where I  is the information contained in the answer 

given that there were N  possibilities, H  the initial uncertainty resulting from the need to consider the N  

possibilities, and p  the probability of each outcome if all N  possibilities are equally likely to occur. The 
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expression can be generalized to the situation in which the probability of each outcome is not the same. 

If one knows from past experience that some elements are more likely to be present than others, the 

equation is adjusted so that the logarithms of the individual probabilities, suitable weighted, are 

summed: H = –Σ pi log2 pi, where: Σ pi = 1. Consider the original example, except that now past 

experience showed that 90% of the samples contained no iron. The degree of uncertainty is calculated 

using the equation as: H = –(0.9 log2 0.9 + 0.1 log2 0.1) bits = 0.469 bits. In summary for a single event 

occurring with probability p  the degree of surprise is proportional to –ln p. Generalizing the result to a 

random variable X  (which can take N  possible values x1, …, xN with probabilities p1, …, pN), the 

average surprise received on learning the value of X  is –Σ pi ln pi. 

The information entropy associated with the matrix of similarity R is: 

h R( ) = − rij ln rij
i , j
∑ − 1 − rij( )ln 1− rij( )

i, j
∑         (4) 

Denote also by Cb the set of classes and by   
) 
R b  the matrix of similarity at the grouping level b. The 

information entropy satisfies the following properties. 

1. h(R) = 0 if rij = 0 or rij = 1. 

2. h(R) is maximum if rij = 0.5, i.e., when the imprecision is maximum. 

3. 
  
h

) 
R b( )≤ h R( ) for any b, i.e., classification leads to a loss of entropy. 

4. 
  
h

) 
R b1( )≤ h

) 
R b2( ) if b1 < b2, i.e., the entropy is a monotone function of the grouping level b. 

4. The Equipartition Conjecture of Entropy Production 

In the classification algorithm, each hierarchical tree  corresponds to a dependence of entropy on the 

grouping level, and thus an h–b  diagram can be obtained. The Tondeur and Kvaalen equipartition 

conjecture of entropy production  is proposed as a selection criterion among different variants resulting 

from classification among hierarchical trees. According to the conjecture for a given charge or duty, the 

best configuration of a flowsheet is the one in which entropy production is most uniformly distributed, 

i.e., closest to a kind of equipartition. One proceeds here by analogy using information entropy  instead 
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of thermodynamic entropy. Equipartition implies a linear dependence, i.e., a constant production of 

entropy along the b  scale, so that the equipartition line  is described by: 

heqp = hmaxb             (5) 

Since the classification is discrete, a way of expressing equipartition would be a regular staircase 

function. The best variant is chosen to be that minimizing the sum of squares of the deviations: 

SS = h − heqp( )2
bi

∑            (6) 

5. Learning Procedure 

Learning procedures  similar to those encountered in stochastic methods  are implemented as follows.48 

Consider a given partition into classes as good  or ideal from practical or empirical observations, which 

corresponds to a reference  similarity matrix S = [sij] obtained for equal weights a1 = a2 = … = a  and for 

an arbitrary number of fictious properties. Next consider the same set of species as in the good 

classification and the actual properties. The similarity degree rij is then computed with Equation (1) 

giving the matrix R. The number of properties for R and S may differ. The learning procedure consists 

in trying to find classification results for R, as close as possible to the good  classification. The first 

weight a1 is taken constant and only the following weights a2, a3,… are subjected to random variations. 

A new similarity matrix is obtained using Equation (1) and the new weights. 

The distance between the partitions into classes characterized by R and S is given by: 

D = − 1 − rij( )ln 1 − rij

1− sijij
∑ − rij ln

rij

sijij
∑

     ∀0 ≤ rij ,sij ≤ 1   (7)

 

The definition was suggested by that introduced in information theory by Kullback to measure the 

distance between two probability distributions.49 In the present case it is a measure of the distance 

between matrices R and S. Since for every matrix there is a corresponding classification, the two 

classifications will be compared by the distance. The D  is a nonnegative quantity that approaches zero 

as the resemblance between R and S increases. 
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The result of the algorithm is a set of weights allowing adequate classification. The procedure was 

applied to the synthesis of complex flowsheets using information entropy.50 

Our program MolClas is a simple, reliable, efficient and fast procedure for molecular classification, 

based on the equipartition conjecture of entropy production according to Equations (1) to (7). It reads 

the number of properties and the molecular properties. MolClas allows the optimization of the 

coefficients. It optionally reads the starting coefficients and the number of iteration cycles. The 

correlation matrix can be either calculated by the program or read from the input file. MolClas allows 

the transformation of the correlation matrix from the range [–1, 1] to [0, 1]. It calculates the similarity 

matrix of the properties in symmetric storage mode, calculates the classifications, tests if the 

classifications are different, calculates the distances between classifications, calculates the similarity 

matrices of the classifications, calculates the information entropy of classifications, optimizes the 

coefficients, performs both single- and complete-linkage hierarchical cluster analyses, and plots the 

cluster diagrams. Molclas was written not only to analyze the equipartition conjecture of entropy 

production, but also to explore the world of molecular classification. 

6. Calculation Results and Discussion 

The cytoprotection data of anti-human immunodeficiency virus type 1 (HIV-1) TCs reported by Ranise 

et al. were used as the model dataset: the cytoprotection data [EC50 (μM)] of substituted TCs were 

converted to the logarithmic scale [pEC50, (EC50 in mM)] and then used for subsequent classification 

analyses based on molecular structure. The k-means clustering of compounds using standardized 

descriptor matrix, by Mitra et al., was taken as reference classification. They classify the TCs in three 

classes: class 1 (33–39,41–51,53,54), class 2 (1–3,5–9,11,13,15–19,22–28,30–32,56,58–61) and class 3 

(4,10,12,14,20,21,29,40,52,55,57,62). 

The Pearson correlation coefficient matrix has been calculated between the pairs of vector 

properties <i1,i2,i3,i4> of the 62 TCs. The Pearson intercorrelations are illustrated in the partial 

correlation diagram, which contains high (r ≥ 0.75), medium (0.50 ≤ r < 0.75), low (0.25 ≤ r < 0.50) and 
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zero  (r < 0.25) partial correlations. Pairs of inhibitors with high partial correlations show a similar 

vector property. However, the results should be taken with care, because the 16 TCs with constant 

<1111> vector (Entries 17–32) show null standard deviation, causing high partial correlations (r = 1) 

with any inhibitor, which is an artifact. With the equipartition conjecture the intercorrelations are 

illustrated in the partial correlation diagram, which contains 506 high, 488 medium (orange), 473 low 

(yellow) and 424 zero  (black) partial correlations. Notice that 624 out of 976 (16×39/61) high partial 

correlations of Entries 17–30 were corrected; e.g., for Entry 17 the correlations with Entries 1–16 are 

medium, its correlations with Entries 41–55 are low and its correlations with Entries 33–40 are zero  

partial correlations. 

The grouping rule in the case with equal weights ak = 0.5 for 0.88 ≤ b1 ≤ 0.93 allows the classes: 

C–b1 = (1–16)(17–32)(33–40)(41–52)(53)(54,55)(56,57)(58–62) 

The eight classes are obtained with the associated entropy h–R–b1 = 32.66. The dendrogram  (binary 

tree)51–53 matching to <i1,i2,i3,i4> and C–b1 is calculated;54 it provides a binary taxonomy of Table 1, 

which separates the same eight classes: the data bifurcates into classes 5, 1–4, 6–8 with 1, 16, 16, 8, 12, 

2, 2 and 5 TCs, respectively. In particular TC 17, 27, etc. with the greatest cytoprotection activity are 

grouped into the same class. The TCs belonging to the same class appear highly correlated in the partial 

correlation diagram, in qualitative agreement with the reference clustering. 

Table 1. Vector properties of anti-HIV thiocarbamates for molecular substitutions (B1/2, R, R1, R2). 

1. –B1 –H –H –H <1011>    32. –B1 4-OC2H5 –H –H <1111> 
2. –B1 2-CH3 –H –H <1011>    33. –B2 –H –H –H <0011> 
3. –B1 2-CH(CH3)2 –H –H <1011>   34. –B2 2-CH3 –H –H <0011> 
4. –B1 2-CF3 –H –H <1011>    35. –B2 2-F –H –H <0011> 
5. –B1 2-F –H –H <1011>    36. –B2 2-OCH3 –H –H <0011> 
6. –B1 2-Cl –H –H <1011>    37. –B2 3-CH3 –H –H <0011> 
7. –B1 2-Br –H –H <1011>    38. –B2 3-Cl –H –H <0011> 
8. –B1 2-OCH3 –H –H <1011>   39. –B2 3-OCH3 –H –H <0011> 
9. –B1 3-CH3 –H –H <1011>    40. –B2 3-SO2-CH3 –H –H <0011> 
10. –B1 3-CF3 –H –H <1011>   41. –B2 4-CH3 –H –H <0111> 
11. –B1 3-COCH3 –H –H <1011>   42. –B2 4-C2H5 –H –H <0111> 
12. –B1 3-COOCH3 –H –H <1011>   43. –B2 4-CH(CH3)2 –H –H <0111> 
13. –B1 3-Cl –H –H <1011>    44. –B2 4-CN –H –H <0111> 
14. –B1 3-SO2-CH3 –H –H <1011>   45. –B2 4-F –H –H <0111> 
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15. –B1 3-NO2 –H –H <1011>   46. –B2 4-Cl –H –H <0111> 
16. –B1 3-OCH3 –H –H <1011>   47. –B2 4-Br –H –H <0111> 
17. –B1 4-CH3 –H –H <1111>   48. –B2 4-I –H –H <0111> 
18. –B1 4-C2H5 –H –H <1111>   49. –B2 4-NO2 –H –H <0111> 
19. –B1 4-CH(CH3)2 –H –H <1111>   50. –B2 4-OCH3 –H –H <0111> 
20. –B1 4-CF3 –H –H <1111>   51. –B2 4-OC2H5 –H –H <0111> 
21. –B1 4-COOC2H5 –H –H <1111>   52. –B2 4-OCH2C6H5 –H –H <0111> 
22. –B1 4-COCH3 –H –H <1111>   53. –B2 4-CH3 –H –CH3 <0110> 
23. –B1 4-CN –H –H <1111>   54. –B2 4-Cl –CH3 –H <0101> 
24. –B1 4-F –H –H <1111>    55. –B2 4-NO2 –CH3 –H <0101> 
25. –B1 4-Cl –H –H <1111>    56. –B1 4-Cl –CH3 –H <1101> 
26. –B1 4-Br –H –H <1111>    57. –B1 4-NO2 –CH3 –H <1101> 
27. –B1 4-I –H –H <1111>    58. –B1 4-CH3 –H –CH3 <1110> 
28. –B1 4-NH(CH3)2 –H –H <1111>   59. –B1 4-CN –H –CH3 <1110> 
29. –B1 4-NH(C2H5)2 –H –H <1111>  60. –B1 4-Cl –H –CH3 <1110> 
30. –B1 4-NO2 –H –H <1111>   61. –B1 4-Br –H –CH3 <1110> 
31. –B1 4-OCH3 –H –H <1111>   62. –B1 4-NO2 –H –CH3 <1110> 
 

At level b2 with 0.82 ≤ b2 ≤ 0.87 the set of classes turns out to be: 

C–b2 = (1–16)(17–32,58–62)(33–40)(41–53)(54,55)(56,57) 

Six classes result in this case and the entropy decreases to h–R–b2 = 18.02. The dendrogram 

matching to <i1,i2,i3,i4> and C–b2 divides the same six classes: 1–6 with 16, 21, 8, 13, 2 and 2 TCs, 

respectively. Again TC 17, 27, etc. with greater cytoprotection activity are grouped into the same class. 

The TCs belonging to the same class appear highly correlated in the partial correlation diagram, in 

qualitative agreement with the reference clustering and previous results. 

At level b3 with 0.69 ≤ b3 ≤ 0.81 the set of classes results: 

C–b3 = (1–16)(17–32,56–62)(33–40)(41–55) 

Four classes result and the entropy decreases to h–R–b3 = 8.09. The dendrogram matching to 

<i1,i2,i3,i4> and C–b3 is computed; it provides a binary taxonomy of Table 1, which splits the same four 

classes: 1–4 with 16, 23, 8 and 15 TCs, respectively. Once more TC 17, 27, etc. with the greatest 

cytoprotection activity are grouped into the same class. The TCs belonging to the same class appear 

highly correlated in the partial correlation diagram, in qualitative agreement with the reference 

clustering and previous results. 

At level b4 with 0.44 ≤ b4 ≤ 0.56 the set of classes is: 
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C–b4 = (1–32,56–62)(33–55) 

Two classes result and the entropy decreases to h–R–b4 = 1.84. The dendrogram matching to 

<i1,i2,i3,i4> and C–b4 separates the same two classes: 1–2 with 39 and 23 TCs, respectively. One more 

time TC 17, 27, etc. with the greatest cytoprotection activity are grouped into the same class. The TCs 

belonging to the same class appear highly correlated in the partial correlation diagram, in qualitative 

agreement with the reference clustering and previous results. 

A comparative analysis of the set containing 1–62 classes, in agreement with previous results. 

In view of the previous partial correlation diagram and dendrograms we suggest to split the data into 

three classes: class 1 (1–16), class 2 (17–32,56–62) and class 3 (33–55). The dendrogram shows, again, 

that TC 17, 27, etc. are grouped into the same class. The results are in qualitative agreement with the 

reference clustering, corresponding class 1 with cluster 2, class 2 with cluster 1 and class 3 with cluster 

3. 

The illustration of the classification above in a radial tree shows the same classes, in qualitative 

agreement with partial correlation diagram, dendrogram and previous results. Once more TC17, 27, etc. 

are grouped into the same class. 

SplitsTree is a program for analyzing cluster analysis (CA) data.55 Based on the method of split 

decomposition, it takes as input a distance matrix  or a set of CA data and produces as output a graph, 

which represents the relationships between the taxa. For ideal data this graph is a tree whereas less ideal 

data will give rise to a tree-like network, which can be interpreted as possible evidence for different and 

conflicting data. Furthermore as split decomposition does not attempt to force data onto a tree, it can 

provide a good indication of how tree-like given data are. The splits graph for the 64 TCs in Table 1 

reveals no conflicting relationship between the inhibitors. Most groups of TCs appear superimposed, viz. 

1–16, 17–32, 33–40, 41–52, 54–55, 56–57, and 58–62. The splits graph is in qualitative agreement with 

partial correlation diagram, dendrograms, radial tree and previous results. 

Usually, in quantitative structure–property relationship (QSPR) studies, the data file contains less 

than one hundred objects and several thousands of X-variables. In fact, there are so many X-variables 



14 

that no one can discover by inspection  patterns, trends, clusters, etc. in the objects. Principal 

components analysis  (PCA) is a technique extremely useful to summarize  all the information contained 

in the X-matrix and put it in a form understandable by human beings.56–61 The PCA works by 

decomposing the X-matrix as the product of two smaller matrices P and T. The loading matrix (P) with 

information about the variables contains a few vectors, the so-called Principal Components (PC), which 

are obtained as linear combinations of the original X-variables. The score matrix (T), with information 

about the objects, is such that each object is described in terms of their projections onto the PCs, instead 

of the original variables: X = TP' +E . The information not contained in the matrices remains as 

unexplained  X-variance  in a residual matrix (E). Every PCi is a new coordinate expressed as a linear 

combination of the old features xj: PCi = bijxjj∑ . The new coordinates PCi are called scores or factors 

while coefficients bij are called loadings. The scores are ordered according to their information content 

with regard to the total variance among all objects. The score–score plots show the positions of 

compounds in the new coordinate system, while loading–loading plots show the position of features that 

represent compounds in the new coordinate system. PCs have two interesting properties. (1) They are 

extracted in decreasing order of importance. The first PC always contains more information than the 

second does, the second more than the third, etc. (2) Every PC is orthogonal to each other. There is 

absolutely no correlation between the information contained in different PCs. 

A PCA was carried out for the TCs. The importance of the PCA factors F1–F4 for {i1,i2,i3,i4} is 

calculated. In particular the use of only the first factor F1 explains 32% of the variance (68% of the 

error); the combined use of the first two factors F1–2 explains 62% of the variance (38% error); the use of 

the first three factors F1–3 explains 85% of the variance (15% error). 

The PCA factor loadings are computed. 

The PCA F1–4 profile for the vector property is calculated. In particular for F1 and F4, variable i2 has 

the greatest weight in the profile; however F1 cannot be reduced to two variables {i2,i4} without a 13% 

error. For F2 variable i1 has the greatest weight; notwithstanding F2 cannot be reduced to two variables 
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{i1,i3} without a 28% error. For F3 variable i1 has the greatest weight; nevertheless F3 cannot be reduced 

to two variables {i1,i3} without an 8% error. Factors F1–4 can be considered as linear combinations of 

{i2,i4}, {i1,i3}, {i1,i3} and {i2,i4} with 13%, 28%, 8% and 23% errors, respectively. 

In the PCA F2–F1 scores plot, the TCs with the same vector property appear superimposed. Three 

classes of TCs are clearly distinguished in agreement with the reference clustering, viz. class 1 with 16 

compounds (F1 > F2 > 0), class 2 with 23 substances (F1 < F2), and class 3 with 23 molecules 

(0 ≈ F1 > F2). The classification is in qualitative agreement with the partial correlation diagram, 

dendrograms, radial tree, splits graph and previous results. 

From the PCA factor loadings of the TCs, the F2–F1 loadings plot depicts the four properties. In 

addition as a complement to the scores plot for the loadings, it is confirmed that the TCs in class 1 

present a contribution of R1 = –H, situated on the same side. The TCs in class 2 have more pronounced 

contributions from B1/2 = B1. Finally TCs in class 3 present a contribution of R = 4-substitution and 

R2 = –H. Two classes of properties are clearly distinguished in the loadings plot, viz. class 1 {R,R2} 

(F1 > F2), and class 2 {B1/2,R1} (F1< F2). 

Instead of 62 TCs in the ℜ4 space of four vector properties consider four properties in the ℜ62 space 

of 62 TCs. The dendrogram for the vector properties separates first properties R and R2 (class 1) and, 

finally, properties B1/2 and R1 (class 2), in agreement with PCA the loadings plot. 

The radial tree for the vector properties separates the same classes as the PCA loadings plot and 

dendrogram. 

The splits graph for the properties reveals no conflicting relationship between the vector 

components and is in agreement with the PCA loadings plot, binary and radial trees. 

A PCA was performed for the vector properties. The use of only the first factor F1 explains 43% of 

the variance (57% of the error); the combined use of the first two factors F1–2 explains 64% of the 

variance (36% error); the use of the first three factors F1–3 explains 82% of the variance (18% error), etc. 

In the PCA F2–F1 scores plot, R2 (class 1) appears superimposed on R1 (class 2). Two classes of 
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properties are distinguished, viz. class 1 {R, R2} (F1 < F2), and class 2 {B1/2, R1} (F1 > F2), in agreement 

with the PCA loadings plot, binary and radial trees and splits graph. 

In the recommended format for the periodic table (PT) of the TCs they are classified first by i4, then 

by i3, i2 and, finally, by i1. Periods of four units are assumed; e.g., group g00 stands for <i1,i2> = <00>, 

viz. <0011> (–B2 –H –H –H, etc.), etc. Those inhibitors in the same column appear close in the partial 

correlation diagram, dendrograms, radial tree, splits graph, PCA scores and previous results. 

It is calculated the variation of property P  (cycloprotection activity against HIV-1) of vector 

<i1,i2,i3,i4> vs. structural parameters {i1,i2,i3,i4} for the TCs. This property was not used in the 

development of the PT and serves to validate it. The results agree with a PT of properties with vertical 

groups defined by {i1,i2} and horizontal periods described by {i3,i4}. 

The variation of property P  of vector <i1,i2,i3,i4> vs. the number of the group in PT for the TCs 

reveals or extrapolates minima corresponding to TCs with <i1,i2> ca. <00> (group g00). The p1, p10 and 

p11 represent rows 1, 2 and 3. The P(i1,i2,i3,i4) corresponding function denotes a series of waves  clearly 

limited by maxima or minima, which suggest a periodic behaviour that recalls the form of a 

trigonometric function. For <i1,i2,i3,i4> a minimum is clearly shown. The distance in <i1,i2,i3,i4> units 

between each pair of consecutive minima is four, which coincides with the TC sets in the successive 

periods. The minima occupy analogous positions in the curve and are in phase. The representative points 

in phase should correspond to the elements of the same group in PT. For the <i1,i2,i3,i4> minima there is 

coherence between the two representations; however the consistency is not general. The comparison of 

the waves shows two differences: (1) periods 1–2 are incomplete and (2) period 3 is somewhat 

sawtooth-like. The most characteristic points of the plot are the minima, which lie about group g00. The 

values of <i1,i2,i3,i4> are repeated as the periodic law (PL) states. 

An empirical function P(p) reproduces the different <i1,i2,i3,i4> values. A minimum of P(p) has 

meaning only if it is compared with the former P(p–1) and later P(p+1) points, needing to fulfil: 

Pmin p( )< P p−1( ) 

Pmin p( )< P p+1( )            (8) 
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Order relations (8) should repeat at determined intervals equal to the period size and are equivalent to: 

Pmin p( )− P p −1( ) < 0  

P p +1( )− Pmin p( ) > 0            (9) 

As relations (9) are valid only for minima more general others are desired for all values of p. The 

D(p) = P(p+1) – P(p) differences are calculated by assigning each of their values to TC p: 

D p( )= P p +1( )− P p( )           (10) 

Instead of D(p) the values of R(p) = P(p+1)/P(p) can be taken by assigning them to TC p. If PL were 

general the elements in the same group in analogous positions in different waves would satisfy: 

D p( )> 0 or D p( )< 0           (11) 

R p( )> 1 or R p( )< 1            (12) 

However the results show that this is not the case so that PL is not general existing some anomalies; e.g., 

the variation of D(p) vs. group number presents lack of coherence between the <i1,i2,i3,i4> Cartesian and 

PT representations. If consistency were rigorous all the points in each period would have the same sign. 

In general, there is a trend in the points to give D(p) < 0 for the lower groups but not for the greater 

groups. In detail, however, there are irregularities in which the TCs for successive periods are not 

always in phase. 

The change of R(p) vs. group number confirms the lack of constancy between the Cartesian and PT 

charts. If steadiness were exact, all the points in each period would show R(p) either lesser or greater 

than one. There is a trend in the points to give R(p) < 1 for the lower groups but not for the greater 

groups. Notwithstanding, there are confirmed incongruities in which the TCs for successive waves are 

not always in phase. 

7. Computational Method 

The key problem in classification studies is to define similarity indices, when several criteria of 

comparison are involved. The first step in quantifying the concept of similarity, for molecules of TCs, is 
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to list the most important portions of such molecules. Furthermore the vector of properties  

i  = <i1,i2,…ik,…> should be associated with each inhibitor i, whose components correspond to different 

characteristic groups in the TC molecule, in a hierarchical order according to the expected importance of 

their pharmacological potency. If the m-th  portion of the molecule is pharmacologically more 

significant for the inhibitory effect than the k-th  portion, then m < k. The components ik are “1” or “0”, 

according to whether a similar (or identical) portion of rank k  is present or absent in TC i, compared 

with the reference TC. The analysis includes four regions of structural variations in the TC molecules: 

one is the R position on the phenyl ring (showing diverse substitution pattern), and the remaining are R1, 

R2 and B1/2 positions (showing limited substitution pattern, cf. Fig. 3). It is assumed that the structural 

elements  of a TC molecule can be ranked, according to their contribution to inhibitory potency in the 

following order of decreasing importance: B1/2 > R > R1 > R2. Index i1 = 1 denotes B1/2 = B1 (0 for 

B1/2 = B2), i2 = 1 denotes 4-substitution on the phenyl ring, i3 = 1 denotes R1 = H and i4 = 1 denotes 

R2 = H. In some inhibitors B1/2 = B1, in some others B1/2 = B2. In TC 17 B1/2 = B1, R = 4–CH3 and 

R1 = R2 = H. Obviously its associated vector is <1111>. In this study, TC 17 was selected as a reference  

because of its maximum cytoprotection activity against HIV-1. 
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Fig. 3. Molecular structure of an anti-HIV thiocarbamate molecule: (a) B1 and (b) B2. 

Table 1 contains the vectors associated with 62 TCs. Vector <1011> is associated with TC 1 since 

B1/2 = B1, and R = R1 = R2 = H. Let us denote by rij (0 ≤ rij ≤ 1) the similarity index of two TCs 

associated with the   i  and  j  vectors, respectively. The relation of similitude is characterized by a 

similarity matrix  R = [rij]. The similarity index between two TCs   i  = <i1,i2,…ik…> and 

  j  = <j1,j2,…jk…>  is defined as: 

rij = tk ak( )k
k
∑    (k = 1,2,…)          (1) 

where 0 ≤ ak ≤ 1 and tk = 1 if ik = jk but tk = 0 if ik ≠ jk. The definition assigns a weight (ak)k to any 

property involved in the description of molecule i  or j. 

8. Conclusions 

From the present results and discussion the following conclusions can be drawn. 

1. Several criteria, selected to reduce the analysis to a manageable quantity of structures from the set 

of thiocarbamates, refer to the structural parameters related with the R position on the phenyl ring and 

the R1, R2 and B1/2 positions. Many algorithms for classification are based on information entropy. For 

sets of moderate size an excessive number of results appear compatible with the data, and the number 

suffers a combinatorial explosion. However after the equipartition conjecture, one has a selection 

criterion between different variants resulting from classification between hierarchical trees. According to 

the conjecture, the best configuration of a flowsheet is the one in which the entropy production is most 

uniformly distributed. The method avoids the problem of other methods of continuum variables because, 

for the 16 compounds with constant <1111> vector, the null standard deviation always causes a Pearson 

correlation coefficient of r = 1. The lower-level classification processes show lower entropy. 

2. Program MolClas is a simple, reliable, efficient and fast procedure for molecular classification, 

based on the equipartition conjecture of entropy production. It was written not only to analyze the 

equipartition conjecture of entropy production, but also to explore the world of molecular classification. 
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3. In this study we classified a new class of non-nucleoside reverse transcriptase inhibitor 

thiocarbamate isosteres of phenethylthiazolylthiourea derivatives. The biological results show that the 

ring-closed thiocarbamates bearing para  substituents on the N-phenyl ring, e.g., methyl, iodo, chloro, 

bromo, nitro and methoxy, were potent inhibitors, but maximum potency was reached by introducing an 

additional methyl group at the 4-position of the phthalimide framework in a p-nitro ring-closed 

thiocarbamate. In terms of resistance against the clinically relevant mutations, the major molecular 

flexibility of the thiocarbamates with regard to phenethylthiazolylthiourea derivatives did not give the 

eagerly awaited results. Nevertheless, the significant activity of a thiocarbamate (50% inhibitory 

concentration 2.3μM) against the K103R mutant in enzyme assays and of five thiocarbamates against 

the Y181C in cell-based assays offers a stimulus for the design of new thiocarbamate analogues with 

better resistance profile. 

4. The good comparison of our classification results, with other clustering taken as good, confirm 

the adequacy of the cytoprotection activity for the molecular structures of the thiocarbamates. 

Information entropy and principal component analyses permit classifying the compounds and agree. The 

substances are grouped into different classes. In general the three classical clusters are recognized. 

5. Classification algorithms are proposed based on information entropy. The 62 thiocarbamates are 

classified by structural chemical properties. The analysis includes four regions of structural variations in 

the thiocarbamate molecules: the R position on the phenyl ring and the R1, R2 and B1/2 positions. The 

structural elements  of a thiocarbamate molecule can be ranked  according to their cytoprotection 

activity in the order: B1/2 > R > R1 > R2. In thiocarbamate 17, B1/2 = B1, R = 4–CH3 and R1 = R2 = –H; 

its associated vector is <1111>. Thiocarbamate 17 was selected as a reference. The examination is in 

agreement with principal component analysis, comparing well with other clustering taken as good. 

6. The periodic law has not the rank of the laws of physics: (1) the cytoprotection activities of the 

thiocarbamates are not repeated; perhaps their chemical character; (2) the order relationships are 

repeated with exceptions. The analysis forces the statement: The relationships that any thiocarbamate p  

has with its neighbour p + 1 are approximately repeated for each period. Periodicity is not general; 
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however if a natural order of the compounds is accepted the law must be phenomenological. The 

cytoprotection activity was not used in the generation of the periodic table and serves to validate it. 

7. The representation of other properties of the thiocarbamates in the periodic table would give an 

insight into the possible generality of this table. 
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