The 3rd International Online Conference on Toxins

10-12 September 2025 | Online

Crotalus molossus Venom-Loaded PLGA Nanoparticles as Potential Drug Delivery Systems for Breast Carcinoma Cells

Jorge Jiménez-Canale ¹, Rene A. Navarro-Lopez ², Amed Gallegos-Tabanico ³, Cinthya P. Felix-Navarro ¹, Alexel J. Burgara-Estrella ³, Erika Silva-Campa ³, Jose A. Huerta-Ocampo ⁴ and José-Andrei Sarabia-Sainz ^{3m}

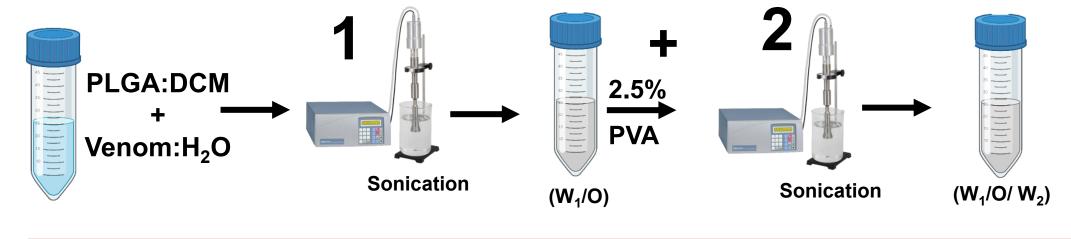
- ¹ Department of Research in Polymers and Materials, University of Sonora, Hermosillo, Sonora, Mexico.
 - ² Department of Health Sciences, University of Sonora, Hermosillo, Sonora, Mexico.
 - ³ Department of Research in Physics, University of Sonora, Hermosillo, Sonora, Mexico.
 - ⁴ Center for Research in Feeding and Development (CIAD). Hermosillo, Sonora, Mexico.

INTRODUCTION & AIM

Cancer is one of the leading causes of death in developed and in under-development countries. Specifically in Mexico, breast cancer is amongst the most common types in both incidence and mortality.

Encapsulating bioactive agents such as **peptides** and **proteins** in biocompatible **nanoparticles**, such as PLGA, may enhance their therapeutic properties.

Snake venoms contain a high diversity of bioactive agents, some of which have been reported with:



Antibacterial activity
Antiparasistic activity
Antitumoral activity

Our aim was to entrapp the venom of the northern blacktailed rattlesnake (*Crotalus molossus*) into PLGA NPs, and evaluate their drug delivery system potential against a breast carcinoma cell line (T-47D).

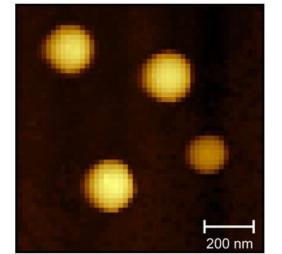
METHOD

Nanoparticles (NPs) were obtained by a double emulsion-solvent evaporation process:

CONCLUSION

- The **encapsulation** of **bioactive components** from *C. molossus* venom **was effective** through a double emulsion-solvent evaporation method.
- **Venom** from the **PLGA NPs** was **released** in a **sustained** manner following a first-order model kinetic, driven mainly by diffusion and matrix relaxation process.
- The PLGA-Venom NPs delivered the bioactive components into the breast carcinoma cells, supporting their role as potential drug delivery systems.

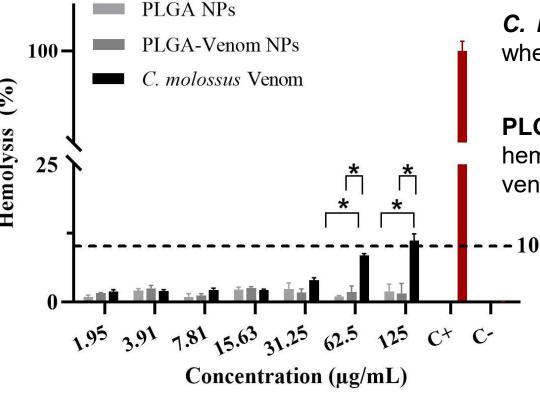

FUTURE WORK / REFERENCES



RESULTS & DISCUSSION

PLGA-Venom NPs have suitable sizes and high EE%

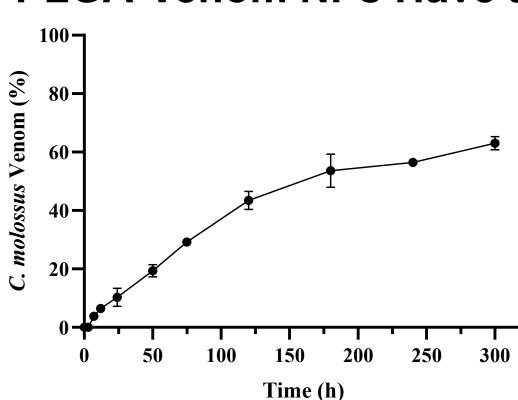
Nanoparticles	D _H (nm)	PDI	Z-Potential (mV)	EE%	LC%
PLGA NPs	286.9 ± 3.49	0.11 ± 0.02	$\textbf{-32.5} \pm 0.65$	N/A	N/A
PLGA-Venom NPs	310.2 ± 5.36	0.15 ± 0.02	$\textbf{-32.8} \pm 0.46$	74.54 ± 4.22	9.19 ± 0.92



PLGA-Venom NPs have a smooth surface and are spherically shaped.

AFM images confirm **DLS** size data.

Snake Venom Encapsulation Inhibits Hemolytic Activity

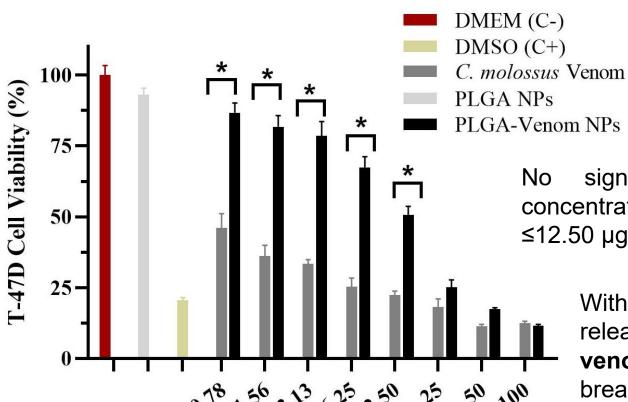


C. molossus venom can be considered as hemolytic when evaluating concentrations >60 μg/mL.

PLGA-Venom NPs did not exhibit a significant hemolytic activity when evaluated at the same venom concentrations.

Data suggests that by using concentrations <60 µg/mL of *C. molossus* venom **may** be **safe** against red blood cells.

PLGA-Venom NPs Have a Sustained Protein Release



C. molossus venom from the PLGA NPs was released in a sustained manner, similarly to what's been reported in other works.

Approximately 12.5% of *C. molossus* venom was released during the first 24 h and, around 60% cumulatively released at 300 h.

First-order model **best fits** our data (R²: 0.997), while **zero-order** and **Higuchi** models had **decent**, **but inferior** values (R²: 0.931 and 0.981, respectively).

PLGA-Venom NPs are Cytotoxic Against Breast Carcinoma Cells

IC₅₀ of *C. molossus* venom was determined at 1.55 μg/mL at 24 h.

No significant differences were found at concentrations $\geq 25 \, \mu \text{g/mL}$, in contrast to those $\leq 12.50 \, \mu \text{g/mL}$ ($p \leq 0.001$).

With 12.50 μg/mL of loaded venom, the released amount at 24 h is around **1.56 μg of venom**, reaching approximately **50%** of the breast carcinoma **cells viability**.

0.78 1.56 3.13 6.25 1.50 25 50 100

C. molossus Venom Concentration (μg/mL)