The 2nd International Online Conference on Biomimetics

16-18 September 2025 | Online

Bioinspired Sn-Substituted Hydroxyapatite for Dental Desensitization: Structural Insights and Synthesis Optimization

Taisiya Bolkhovskaya, Polina Kortikova, Ksenia Stasenko, Evgeny Bulanov **Lobachevsky University**

INTRODUCTION & AIM

Hydroxyapatite (HAp), the primary mineral of enamel and dentin

Dentin hypersensitivity affects 15-30% of adults

НАр

remineralization + long-lasting

desensitization

SnF₂-based treatments:

Kchemical instability of

Xlimited integration with

short-term relief

Sn²⁺ in the oral

tooth structures

environment

poor taste

Problems:

METHOD

© Processing

Annealed at 500-900°C, analyzed by XRD

RESULTS & DISCUSSION

Ethanol Synthesis

Sharper XRD peaks indicate higher crystallinity and fewer defects.

Sn Incorporation

Peak shifts confirm Sn²⁺ substitutes Ca²⁺, causing lattice strain.

Annealing Effects

Crystallinity improves below 600°C; above 800°C decomposition occurs.

Acidic Media

Broader peaks suggest point defects and cation vacancies possibly enhancing bioactivity.

XRD pattern of Sn-substituted hydroxyapatite

CONCLUSION

Optimal Synthesis

Ethanol and 600°C annealing yield stable, enamel-like Sn-HAp.

Alternative Approach

Acidic synthesis may suit bioactive or resorbable materials.

Material Benefits

High crystallinity and Sn²⁺ integration promise long-term desensitization.

Next Steps

Optimize Sn content and test in vitro bioactivity.