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Perovskite solar cells (PSCs) have already achieved efficiencies 

above 27%, making them competitive with silicon-based devices. 

Among them, MAPbI₃ is particularly attractive due to its strong light 

absorption, long carrier lifetime, and low fabrication cost, making it 

a promising material for next-generation photovoltaics. However, the 

main challenge is ion migration, which causes instability and 

hysteresis in current-voltage characteristics. To mitigate these issues, 

charge transport layers are employed: SnO₂ (ETL) with high electron 

mobility and NiOx (HTL) with strong hole conductivity and 

resistance to degradation. In this work, drift-diffusion modeling is 

applied to study the influence of carrier mobility, lifetime, and scan 

rate on hysteresis formation. The relevance of this research lies in 

the fact that understanding ion migration mechanisms and their 

numerical modeling is crucial for improving the stability and 

efficiency of PSCs.

A modified one-dimensional drift-diffusion model Driftfusion [1] 

implemented in MATLAB was used to account for ion migration, carrier 

lifetime, mobility, and interband recombination rate. 

A constant mobility model is used for the perovskite and transport layers; ions 

are immobile in transport layers, and transport is described by drift and 

diffusion, with equations below
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Radiative (bimolecular) recombination of electrons and holes is taken into 

account through Rdir

𝑅dir = 𝑘dir 𝑛𝑝 − 𝑛i
2 .

To account for carrier trapping by defects and traps, Shockley-Read-Hall 

(SRH) recombination is used, expressed as follows [2,3]:
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The capture time is determined using the trap capture coefficient 𝐶𝑛,𝑝 and the 

trap density as follows:

τn,p =
1

NtCn,p
.

To calculate the hysteresis index (HI) for all current-voltage (J-V) curves, the 

power conversion efficiency (PCE) values from forward and reverse scans are 

used [4], as follows:

HI =
PCE(reverse)−PCE(forward)

PCE(reverse)
. 

Figure 1. J–V curves of MAPbI₃ with varying ion mobility: (a) equal 

cation/anion mobilities, (b) varying anion mobility with fixed cation 

mobility (10⁻¹² cm²/V·s).

 At high symmetric ion mobility, the device is stable (Voc=0.912 V,

Jsc=20.77 mA/cm², FF≈0.77, PCE=14.7%, PCE=14.7%, HI≈0), whereas at 

low or asymmetric mobility it shows higher efficiency (PCE up to 15.9%) 

but strong hysteresis (HI up to 0.59) and instability.
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Numerical modeling showed that the efficiency and stability of MAPbI₃-

based perovskite solar cells depend on carrier lifetime, mobility, 

recombination rates, ion mobility, and voltage scan rate. The best 

performance is achieved with long carrier lifetimes, balanced mobilities, 

and minimal recombination. High and symmetric ion mobility ensures 

stable operation with negligible hysteresis, while low or asymmetric 

mobility leads to strong distortions and instability. These results highlight 

the need for precise engineering optimization to suppress ion-related 

instabilities and maximize device efficiency.

Figure 2. Simulated J–V curves of MAPbI₃ PSCs with different intrinsic 

ion densities.

J-V curves of MAPbI₃ PSCs show that ion-mediated recombination 

reduces efficiency from 16.94% to 12.31% and induces pronounced 

hysteresis (HI = 0.27).
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