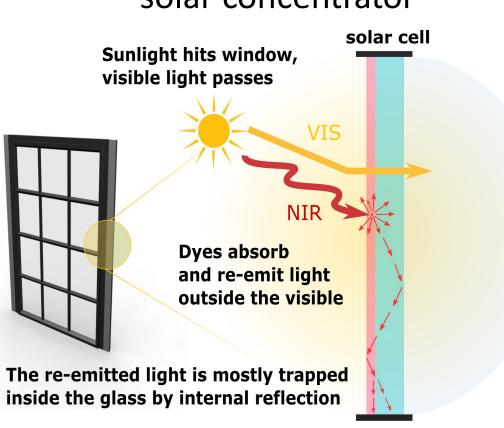
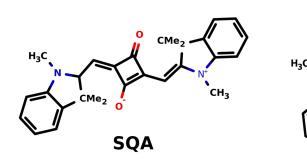
The 5th International Online Conference on Nanomaterials

22-24 September 2025 | Online


Design of new functionalized materials by tuning the photochemical properties of organic dyes

Margarita Bužančić Milosavljević

Center of Excellence for Science and Technology-Integration of Mediterranean region (STIM) University of Split, Ruđera Boškovića 33, 2100 Split, Croatia


INTRODUCTION & AIM

TLSC transparent luminescent solar concentrator

solar cells in the window frame collect the energy

SQUARAINE DYE - ACTIVE COMPONENT

- central squaric-acid ring with two indoline groups planar molecules & DAD structure arrangement
- strong absorption & emission
- **Photostable**
- The most intensive absorption band appears as a result of the HOMO-LUMO transition from the ground to the first excited state

Application:

- photoconducting materials
- photovoltaic
- non-linear optics
- bioimaging probes

DSSC fluorescent

RESULTS & DISCUSSION

DESIGN REQUIREMENTS

- Shift in NIR
- Transparency in VIS

R=CH3

chains do not influence

tSQA

200 300 400 500 600 700 800 900 1000

TDDFT absorption & emission spectrum

for J-aggregates in toluene solvent

- VIS -

300 400 500 600

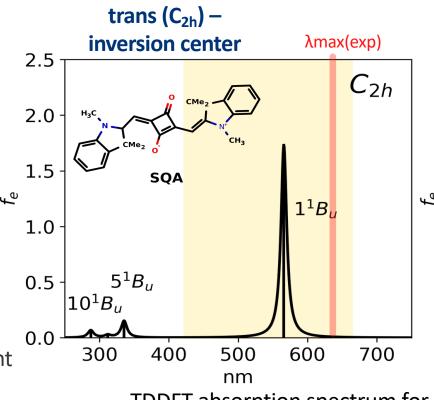
— tetSQA

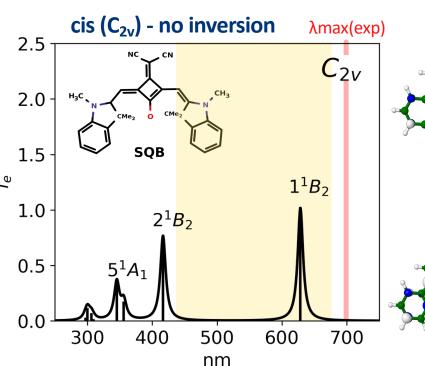
700 800 900 1000

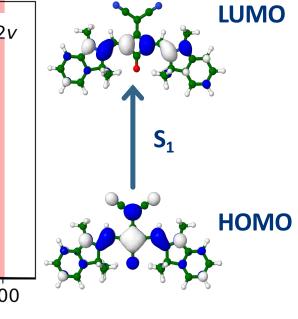
 $1^{1}B (C_{2})$

 $1^{1}A_{u}(C_{i})$

 $1^{1}B(C_{2})$


رق 0.6 ف


0.4


Trans-squaraines, because of the inversion, have symmetry-forbidden transitions (dark), which are in the case of cis-squaraines, allowed (bright).

Absorption spectrum of SQA molecule has a strong and intensive S1 peak. Due to the C2h symmetry and dark transitions, the SQA structure has a transparency window in the visible region of the spectrum.

Problem: Absorption maximum is BLUE shifted

X=Se,Y=H X=0,Y=H

X=S, Se, O, CMe2

Y=H,I,Cl,Br,F

substitution of Y does not have

(selenium most in the NIR)

Substitution near the active

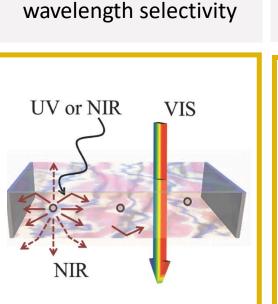
J-AGGREGATES

shift in NIR

Stokes shift

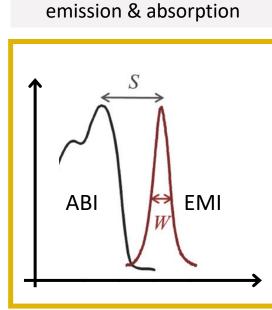
large QY

optimal emission &


= good TLSC candidates

center have strongest influence

influence, with X shifts spectrum


TDDFT absorption spectrum for squaraine dyes in toluene solvent

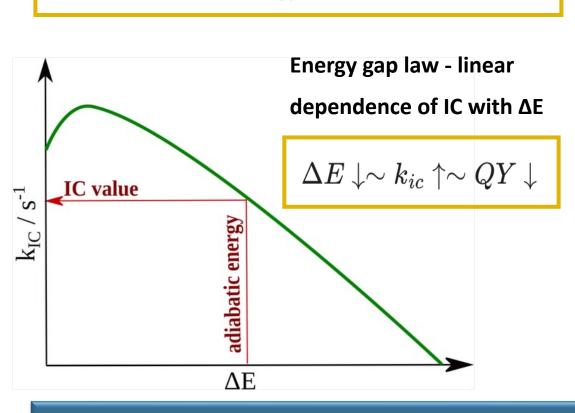
AIM is to study the influence of the structural changes on the photochemical properties of squaraine dyes. narrow EMI, separated

optimal band-gap

high fluorescence QY

prediction of fluorescence QY NIR - high QY dye

Challenge:

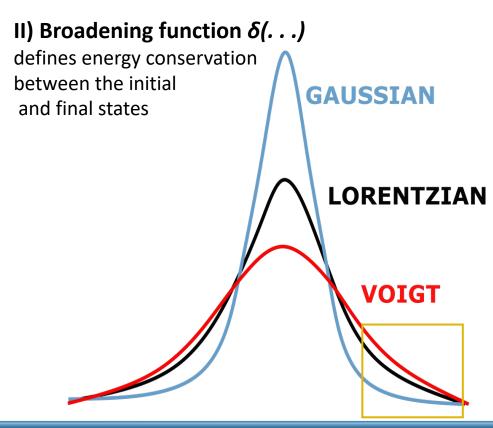

Radiative decay rate

• integration of the emission spectrum

$$k_r = \int_0^\infty \!\! \sigma_{em}(\omega) d\omega$$

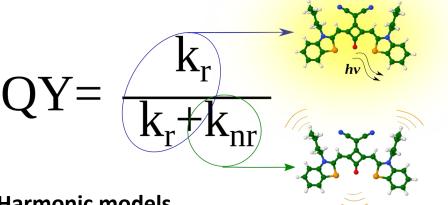
IC rate - form energies of excited and ground state inverse Fourier transform:

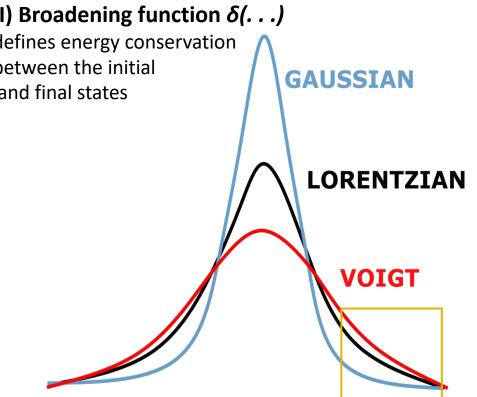
 $k_{ic}\left(\Delta E
ight)=rac{1}{2\pi}\!\int_{-\infty}^{\infty}\!dt \quad e^{\imath\Delta Et}\!\!\stackrel{\sim}{f}\left(t
ight)\!\!\stackrel{\sim}{k}_{ic}\left(t
ight)$



I) Harmonic models

Adiabatic Hessian and Vertical Hessian include:


- displacement
- Duschinsky rotation


COMPUTATIONAL

Structural and optical properties are calculated with DFT and TD-DFT within the Gaussian16 program, with PBE0 functional and def2-SVP AO basis set. Solvent effect is included implicitly via the PCM continuum model.

Radiative and IC rates are calculated with FCclasses 3 program developed by J.Cerzero and F.Santoro

frequency change

CONCLUSION & FUTURE PERSPECTIVES

addition of rings shifts

absorption to red (due to the

enlargement of the system)

superradiance effect

QY(exp)/%

82

85

QY(theor)/%

- The inversion center has a profound influence on the optical properties of SQ dyes
- Substitution of squaraine dyes with different atoms and groups should be further investigated, with an accent on reliable QY prediction

toluene

dSQA

tSQA

Due to their excitonic nature and the superradiance effect, J-aggregates can be used as TLSC luminophores. SQA is more efficient than SQB

REFERENCES

Niu et al, J. Phys. Chem. A . 114 (30), 2010 Lunt, R. R. Appl. Phys. Lett. 101, 043902 (2012). Santoro F. and Cerezo J., FCclasses3, a code to simulate electronic spectra. Version FCclasses3-0.1, 2019. Cerezo, J. and Santoro, F., FCclasses3: J. Comput. Chem., 44(4), 626 (2023). Bužančić Milosavljević M. and Bonačić-Koutecký V. Phys. Chem. Chem. Phys., 26, 1314-1321, 2024. Humeniuk et al, The J. Chem. Phys., 152 (5), 054107 2020.

This research was partially supported under the project STIM - REI, Contract Number: KK.01.1.1.01.0003, a project funded by the EU through the ERDF - OPKK

