

The 5th International Online Conference on Nanomaterials

22-24 September 2025 | Online

Computational study of KSnl₃ perovskite solar cells resulting in the power conversion efficiency of 30.44 %

BV Kheswa¹ ¹University of Johannesburg

INTRODUCTION & AIM

- Lead-based perovskite solar cell (PSC) have highly promising performance.
- However, lead is toxic and optimization of lead-free PSCs is of global interest.
- KSnl₃ is a potential active absorption layer material for PSCs.
- Nevertheless, highest PCE of 22.78 % for KSnl₃ based PSCs is still far below the Shockley Queisser limit [1].
- The aim of this study was to optimize various configurations of KSnI₃ PSC.
- Specifically, we employed various ETL materials, while fixing HTL material.
- We also optimized the properties of all layers.

METHOD

- Computational modelling and optimization of four KSnI₃ PSC structures were achieved using SCAPS-1D software package.
- Specifically, we optimized FTO/Al-ZnO/KSnl₃/rGO/Se, FTO/LiTiO₂/KSnl₃/rGO/Se, FTO/SnO₂/KSnl₃/rGO/Se, and FTO/ZnO/KSnI₂/rGO/Se devices, depicted in figure 1.

Figure 1 FTO/ETL/KSnI3/HTL/Se device.

- Al-ZnO, LiTiO₂, SnO₂, and ZnO, and rGO were chosen based on their band alignment with KSnI₃ (see figure 2), high charge mobilities, strong thermal stabilities except for the case of ZnO, and excellent conductivities.
- Simulations in SCAPS-1D are based on solving Poison's, transport, and continuity equations [2], using the finite difference method.

Figure 2 Band alignment of FTO, ETL, HTL and perovskite [3].

RESULTS & DISCUSSION

We started by optimizing the FTO/Al-ZnO/KSnI $_3$ rGO/Se structure. In this optimized structure, we substituted Al-ZnO with SnO $_2$, LiTiO $_2$ and ZnO to get three other structures which were optimized. The results are highlighted below. In these results we assume zero series resistance, and infinite shunt resistance

- Figure 1 shows final optimization stage of the FTO/A-ZnO/KSnI₂/rGO/Se as function of FTO. This figure shows that $V_{co} J_{uc}$ - FF, and PCE are not highly affected By FTO thickness, but we achieved the highest PCE of 27.6% on the FTO/Ai-ZnO/KSnI₂/rGO/Se device.

At this stage the structure has been already optimized for thicknesses and dopant densor rGO, KSnI₃, and ALZnO (see table 1).

This is the optimized structure in which ETL = SnO2, ZnO and LiTiO₂ were substituted.

■ ZnO

Figure 2 snows performance metrics of the FTO/ETL/KSnl₃/rGO/Se as function
 Of ETL thickness. At point the KSnl₃, rGO, and are FTO were already optimized.

- The results Show that SnO_2 yielded the highest PCE = 29.67% and the performance didn't vary with the thickness of this ETL material, due to the high electron mobility of SnO_2 .

- Thus, for further optimization, we focused on FTO/ETL/KSnI $_{\rm 3}$ /rGO/Se. The optimal thickness of SnO $_{\rm 2}$ with deemed 489 nm.

Varying SnO₂ donor dopant density did don't yield significant improvement on performance.

- Varying temperature (T) showed that PCE improves with rise in T up to T = 371 K, yielding PCE = 30.44%

Figure 2 V_{oc}, J_{ac}, FF, and PCE as a function of ETL t

he optimized properties of our four PSC structures. Optimized values are highlight								
Parameters	FTO	Al-ZnO	LiTiO ₂	ZnO	SnO ₂	KSnl ₂	rGO	
Thickness (nm)	100	489	50	489	489	50	<mark>2670</mark>	
E _e (eV)	3.5	3.1	3.15	3.28	3.5	1.84 1	1.69	
χ(eV)	4	4	4	4	3.9	3.44 2	3.56	
٤,	9	9	13.6	9	9	10.4	13.3	
N _c (cm ⁻³)	2.02 × 10 ¹⁸	2 × 10 ¹⁸	3 × 10 ²⁰	2 × 10 ¹⁸	2.2 × 10 ¹⁸	2.2 × 10 ¹⁸	1018	
N _v (cm ⁻³)	1.8 × 1019	1.8 × 10 ¹⁹	2 × 10 ²⁰	1.8 × 1019	1.8 × 1019	1.8 × 10 ¹⁹	1.8 × 10 ²⁹	
Vth (cm s-1)	10 ⁷	107	10 ⁷	107	107	107	107	
Vth _h (cm s ⁻¹)		107	10 ⁷	107	10 ⁷	107	107	
μ _α (cm²/V/s)	2 × 101	13.84	30	43	200	21.28	2.6×10^{1}	
μ _p (cm²/V/s)	1× 10 ⁻¹	25	0.01	25	80	19.46	1.23 × 10 ²	
N _A (cm ⁻²)	0	0	0	0	0	8.33× 10 ²⁰	5.45x10 ²¹	
N _o (cm ⁻²)	2 × 1019	10 ¹⁵	1012	1016	1016	1 × 1015	0	
N _e (cm ⁻²)	1015	1015	1014	1015	1015	1015	1014	

PSC structure	PCE (%)	Reference
FTO/Al-ZnO/KSnl ₂ /rGO/Se	27.16	This paper
FTO/LiTiO ₂ /KSnl ₃ /rGO/Se	24.94	This paper
FTO/ZnO/KSnl ₃ /rGO/Se	27.62	This paper
FTO/SnO ₂ /KSnI ₃ /rGO/Se	30.44	This paper
FTO/TiO ₂ /KSnI ₃ /Spiro-OMeTAD/W	9.776	[23]

PSC structure	PCE (%)	Reference
FTO/Al-ZnO/KSnl ₃ /rGO/Se	27.16	This paper
FTO/LiTiO ₂ /KSnl ₃ /rGO/Se	24.94	This paper
FTO/ZnO/KSnl ₃ /rGO/Se	27.62	This paper
FTO/SnO ₂ /KSnI ₃ /rGO/Se	30.44	This paper
FTO/TiO ₂ /KSnI ₃ /Spiro-OMeTAD/W	9.776	[23]
FTO/C ₆₀ /KSnl ₃ /PTAA/C	10.83	[24]
FTO/TiO ₂ /KSnBr ₃ /Cu ₂ O/Au	8.05	[39]
FTO/F ₁₆ CuPc/KSnl ₃ /CuPc/C	11.91	[25]
FTO/ZnOS/KSnI ₃ /NiO/C	9.28	[26]
FTO/ZnO/KSnl ₃ /CuI/Au	20.99	[27]
FTO/SnO ₃ /3C-SiC/KSnI ₃ /NiO/C	22.78	[28]

CONCLUSION

- In this study we optimized In this study, we optimized FTO/ETL/KSnl₃/rGO/Se, where ETL = AL-ZnO, ZnO, SnO₂, and LiTiO₂
- We obtained PCEs of 27.16%, 24.94%, 27.62%, and 30.44% for ETL = AL-ZnO, LiTiO₂, ZnO, and SnO₂, respectively.
- Our SnO₂ based PSC outperforms FTO/SnO₂/3C-SiC/KSnl₃/NiO/C, which is currently the most efficient KSnI₃ structure in the literature, by more than 7 %.

FUTURE WORK / REFERENCES

[1] Ghani, I.B.A et al. Boosting KSnl₂-based perovskite solar cell efficiency by 22.78% through optimized charge transport and eco-friendly buffer layer.

J. Mater. Sci. 2024, 59, 14547. https://doi.org/10.1007/s10833.024-10051-6

ZJ (Nhewa, B.V. Numerical optimization of all-incorpain CsSnB13 perovskitle solar cells: The observation of 27% power conversion efficiency.

Phys. Scr. 2025, 100, 015933. https://doi.org/10.1088/1402-4896/ad3947

ZJ (Nhewa, B.V. et al. Modeling and Analysis of KAn, Perovskite Solar Cells Yielding Power Conversion Efficiency of 30.21%.

Nanomaterials 2025, 15, 580. https://doi.org/10.3390/nano15080580