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Baseline correction is a critical preprocessing step in Raman 

and surface-enhanced Raman spectroscopy (SERS) that 

directly impacts quantitative analysis accuracy. While the 

adaptive iteratively reweighted penalized least squares 

(airPLS) method [1] is widely used, it suffers from limitations 

when using default parameters: non-smooth baselines, large 

errors in broad peak regions, and difficulties with complex 

spectral features. Existing modified airPLS versions lack 

systematic parameter optimization, particularly for both critical 

parameters: 𝜆 (penalizing smoothness) and 𝜏 (convergence 

tolerance). Here, we present a machine learning approach [2] 

that addresses these limitations.

Aim: To develop a machine learning approach that 

automatically predicts optimal airPLS parameters from input 

spectra, eliminating manual tuning while significantly improving 

accuracy across diverse spectral conditions.
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• OP-airPLS systematically tuned (𝜆, 𝜏), reducing MAE by ~96%.

• PCA–RF directly predicted parameters, retaining ~90% PI.

• ML computational efficiency stays approximately the same as 

DP-airPLS, from 0.013 s → 0.038 s per spectrum.
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Synthetic Dataset:

• 12 spectral shapes: 3 peak types & 4 baseline types.

• 500 spectra per spectral shape.

Grid Search Optimization (OP-airPLS):

• Identify optimal (𝜆, 𝜏) parameter for each spectrum.

• Minimize mean absolute error (MAE) between predicted 

and true baselines across 500 spectra per spectral shape.

• Enforces smoothness for baselines.

Machine Learning Prediction (ML-airPLS):

• Stratified 8:1:1 dataset splits.

• PCA-Random Forest model (PCA–RF).

• Predict optimal parameters directly from spectral features.

• Eliminating true baseline requirements for real applications.

Performance Evaluation:

• Calculate percentage improvement (PI) of MAE between 

default airPLS (DP-airPLS), OP-airPLS, and ML-airPLS.

Parameter Optimization Performance (Figure 2):

• 96 ± 2% PI across all 12 spectral shapes

• Reduced MAE by 1-2 orders of magnitude.

• Optimal (𝜆∗, 𝜏∗) values cluster in linear diagonal region.

Figure 1. Overall workflow of our approach: (A) Generate synthetic 

spectral dataset with corresponding baselines; (B)  grid search to identify 

optimal parameters for each spectrum; (C) machine learning training to 

predict optimal parameters.

Figure 2. (A) Distribution of optimal (𝜆∗, 𝜏∗) values for 12 spectral shapes in 

log-log scale. (B) Average MAE comparison: DP (orange), OP (green), and 

ML (blue) across spectral shapes. (C) PI of OP and ML. 

Machine Learning Prediction (Figure 3):

• 90 ± 10% PI after outlier removal

• PI ≥ 70%: 84.7% test spectra; PI ≥ 80%: 79.5% test spectra

• ML-predicted baselines closely match OP-airPLS results.

Figure 3. Examples of representative spectra comparison showing (A-D) 

ML-predicted (green), OP-airPLS (red), and true baselines (purple). (E-F) 

PCA-RF model performance achieving PI ≥ 70% and ≥ 80% thresholds, 

compared to alternative models.
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