The 5th International Online Conference on Nanomaterials

22-24 September 2025 | Online

Hybrid Photocatalytic Ultrafiltration Membranes: A Scalable Solution for CEC Removal

Hadi Taghavian^{1*}, Akshay Kulkarni², Masoud Khalegiabbasabadi¹, Miroslav Cernik¹, Lukas Dvorak¹ 1 Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec, Liberec, Czechia 2 Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, D-01069 Dresden, Germany

INTRODUCTION & AIM

Aim

- •Develop photocatalytic PES ultrafiltration membranes incorporating BiOI and BiOI-ZnO NPs.
- •Optimization of the NIPS technique for the highest photocatalytic activity.
- ·Simultaneous physical filtration and visible light-driven degradation of CECs.
- •Provide a scalable, energy-efficient quaternary treatment solution with antimicrobial activity.

Introduction

- •CECs (e.g., pharmaceuticals, dyes, plasticizers) persist in stream water and wastewater in the region due to limitations of conventional treatment.
- Czechia faces notable CEC pollution from textile dyeing and plastics industries, including BPA and RB.
- Hybrid photocatalytic membranes offer a dual function: separation and visible-
- light-driven degradation of pollutants. Such systems enhance contaminant removal and antifouling, supporting sustainable wastewater treatment.

METHOD

- Nanoparticle synthesis: BiOI and BiOI–ZnO NPs prepared via hydro-solvothermal method.
- **Membrane fabrication**: PES flat-sheet nanocomposite membranes produced using NIPS.
- Characterization: Structural and surface properties analyzed by SEM, EDX, AFM, and WCA.
- Performance evaluation: Photocatalytic degradation of BPA and RB tested under visible light; flux recovery and antimicrobial activity assessed.

RESULTS & DISCUSSION

SEM

- •SEM confirmed the successful synthesis and uniform incorporation of BiOI and BiOI-ZnO NPs within the membrane matrix.
- All fabricated membranes exhibited a characteristic asymmetric structure with only minor differences.
- •Even at higher NP loadings, the overall membrane morphology and pore structure remained largely unaffected.

Photocatalytic Performance

- •Suspended BiOI and BiOI-ZnO NPs achieved 83% and 97% BPA degradation, respectively, within 2.5 h under visible LED irradiation.
- •NP-modified membranes exhibited strong photocatalytic performance, removing 91.1% (BiOI) and 93.7% (BiOI-ZnO) of BPA during the first cycle.
- •Submerged membranes retained more than 50% of their initial degradation efficiency after five reuse cycles, demonstrating good stability and reusability.

Photocatalytic degradation cycles

- against E. coli on pristine & NP-modified PES membranes.
- •Pristine PES membranes showed no antibacterial effect, while BiOI, BiZn, and ZnO-modified membranes demonstrated significant antimicrobial activity, even in dark conditions.
- •BiOI-modified membranes achieved 47% bacterial reduction after 5 h and 100% reduction after 24 h in dark conditions. •BiZn and ZnO-modified membranes also reached complete bacterial elimination after 24 h.
- •Under visible light irradiation, all NP-modified membranes exhibited enhanced antibacterial efficiency due to photocatalytic effects.

Porous sublayer

CONCLUSION

Photocatalytic Performance

- The integration of BiOI and BiOI-ZnO NPs into PES membranes was successfully achieved.
- Both suspended and membrane-embedded NPs demonstrated strong photocatalytic activity for BPA degradation under visible light, with BiOI-ZnO showing superior efficiency.
- The membranes maintained more than 50% of their initial activity after five reuse cycles, confirming their potential for sustainable CEC removal in submerged treatment systems.

ACKNOWLEDGEMENT

• This work was supported by the Student Grant Competition (SGS) at the Technical University of Liberec in 2025 under project No. SGS-2025-3580.