Nanobodies:
* small “keys” that match

Advantages:
* Small size > reach hidden

Multi-Objective
Active Learning for
Nanobody
Development

Katharina Dost *', Klara Kropiv§ek*2, Christian L.
Camacho Villalén', Saso Dzeroski', and Ario de Marco®

" Jozef Stefan Institute, Slovenia
2 Laboratory for Environment and Life Sciences, University of Nova Gorica, Slovenia

Small dataset (10 - 100s): in-house
nanobodies with measured yields &
developability (high-quality labels).

4 million
native, unlabeled

specific sites on cells,

epitopes that classical

proteins

* can bind to block or
modulate specific
functions

e can carry payload (e.g.,
drug, fluorescent marker)

* Versatile > can be engineered
for therapy, diagnostics,
research

Medium dataset (~2,000): nanobodies

. . 2000
antibodies cannot reach partial info R . .
. Stable & robust > more with partial annotations
tolerant to harsh conditions 10 - 100s (literature/structural).
known

Largest dataset (4 million): non-
redundant native repertoire sequences
(no experimental data, unlabeled).

Obtaining experimental data is costly. A great ML model could guide discovery as it can point to potential candidates for a task,

ensuring developability in the wet lab. A great model needs data to learn from.
Which experiments (= labeled data) would help to train such a model?

Big-Picture Idea
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Active Learning Cycle

In each AL cycle, to select batch of nanobodies (e.g., 10):
« filter based on constraints for

yield, thermal stability, solubility (as predicted)
» drop outliers
« select top X nanobodies that maximize uncertainty in

predicting

yield, polyreactivity, accelerated & thermal stability, solubility

» greedily select diverse subset

Summary:
* Multi-objective active nanobody selection
strategy for better property predictions

Next Steps:

* Model catering to distribution shift

* Refined multi-objective optimization
techniques

* Tests on complete native library
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Uncertainty Map highlighting .
areas with uncertain predictions
per target in Ablang embedding
space (dimensionality reduced | *
with PCA). Blue = initial |
nanobodies; black = selected
batch of nanobodies.

Simulation

Test Set * Simulation on 3000

nanobodies from our native
library
* Labels were obtained using

selection mechanism
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Per-target models with per-
target uncertainties; different
aggregation strategies
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