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context aware applications in various areas including healthcare [1,2], assisted living, sports coaching 

[3], security [4], virtual reality and wearable computing. Such systems can improve the quality of life, 

health, security, freedom and safety of the elderly population at home [5].  

The task of achieving the goal of recognizing the daily activities starts with sensing the physical 

world. This has been approached in two different ways, namely external and wearable sensors. Smart 

homes [6,7] embedded with sensors in everyday objects are a typical example of external sensors. The 

foremost problem with using the external approach is its lack of pervasiveness, i.e. it forces the user to 

stay within a perimeter defined by the position and the capabilities of the sensors. The majority of 

approaches in HAR has relied on the latter case where multiple wearable sensors are attached at 

different locations of the body to detect everyday tasks such as sitting, walking, and running, using 

stairs and jogging [8,9]. Although this provides sufficient contextual information, placing sensors at 

multiple locations can become cumbersome for the wearer. This solution is obtrusive and many people 

may not like to have sensors attached to their bodies, clothes, or belts for that purpose. Therefore, the 

focus of this research is on activity recognition using smartphone as an unobtrusive sensor device that 

can be easily carried around by the users.   

Nowadays, smartphones are equipped with multiple sensors, including accelerometers, gyroscopes, 

magnetometers, proximity, light, pressure, GPS and camera. This makes smartphones to serve as an 

unobtrusive device to collect data as compared to custom tracking systems. Furthermore, software 

creation and distribution are easier because open source tools allow anyone to create applications and 

deploy them on smartphones. Thus, smartphones conveniently contain all of the hardware and software 

capabilities required to create a stand-alone activity tracking system, with the practical benefit that 

people wear them every day. Although, HAR has been studied extensively in the previous works, 

implementing HAR system where the entire recognition process is done on a smartphone is a relatively 

new area. Recently, many studies have incorporated smartphones accelerometer for human activity 

recognition, such as [2,10-13]. However, most of the previous works have used smartphones as mere 

data collection devices, which sent data to an accompanying device (such as PC/server) for further 

processing. Performing real-time activity recognition locally on a smartphone is beneficial in terms of 

scalability, reliability, and energy consumption. However, it becomes challenging since smartphones 

are still constrained in terms of storage, processing and communication capabilities.  

This paper reports an investigation on how we can empower users with unobtrusive context aware 

devices and proposes a design and implementation of a human activity and context recognition system 

that uses a smartphone. Analysis and system evaluations are carried out using both offline and online 

settings, for subject-dependent and subject-independent scenarios using data collected from the 

subjects. 

2. Methods 

2.1. Data Collection 

For this study, activity data were collected from 50 healthy subjects (30 males and 20 females) 

between the ages of 21 and 35 years old, with an average height of 172cm and average weight of 67 

kg. Six common dynamic activities were selected: walking, jogging, using stairs, sitting, standing and 
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lying down. A custom build application was used for data collection and annotation. This application, 

through a simple graphical user interface, permitted to record the user’s ID, start and stops the data 

collection, and label the activity being performed. The subjects carried the Android phone in their front 

trouser leg pocket for recording of the acceleration data. The data was collected in a naturalistic 

fashion, thus, no specific instructions were given to the participants on how to perform the activities 

except how to use this data collection application. The acceleration signals were sampled at 20 Hz and 

stored on a SD (Secure Digital) card in the smartphone. This sampling frequency is sufficient to 

capture most everyday activities [14]. Another reason to use lower sampling when possible is to reduce 

the load of the smartphone. The more data to be measured, the more resource will be needed for either 

storage, transmission or processing. 

2.2. Feature Extraction 

Standard classification algorithms cannot be directly applied to raw time-series accelerometer data. 

Hence, features must be extracted from the raw time series data. For this study, simple time domain 

statistical features were extracted from smartphone raw acceleration data using a window size of 512 

samples with 256 samples overlapping between consecutive windows. Feature extraction on sliding 

windows with a 50% overlap has demonstrated reasonable results in previous works [8,15]. The choice 

of simple statistic features is due to the simplicity and low computational cost. Five features have been 

selected to be evaluated. These are: mean, standard deviation, MAD (mean absolute deviation), time 

between peaks and the resultant magnitude. Five features were extracted from each window, giving a 

total of 13 attributes. These features are then used as an input for WEKA (Waikato Environment for 

Knowledge Analysis) [16] data mining software to train and build the classifiers. 

2.3. Classification Models 

Various classification models have been applied in the field of human activity recognition. 

However, there is no universally accepted method of recognizing a particular set of activities and all 

approaches have associated limitations and benefits. For this study, in order to identify which machine 

learning algorithm provided the most accurate activity detection, eight different classification 

algorithms were applied to the data. These include: BN (Bayesian Network), MLP (Multilayer 

Perceptron), NB (Naïve Bayes), J48 (C4.5 Decision Tree), RT (Random Tree), RBFNet (Radial Basis 

Function Network), SMO (Sequential Minimal Optimization) and Logistic Regression.  

To determine whether a classifier is superior than another, a 25 fold cross validation was 

performed using the WEKA experimenter. A paired t-test was subsequently performed on the results to 

identify if the percentage of correctly classified instances was significantly different using the J48 as 

the baseline scheme, with the other seven algorithms being compared to it. A value of less than p = 

0.05 was considered statistically significant. To further evaluate the performance of our approach we 

have employed conventional metrics including the precision, the recall rate, the F-measure, FPR (false 

positive rate) and FNR (false negative rate). 
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3. Results and Discussion 

3.1. Offline Analysis using WEKA (subject-independent) 

In total eight classifiers were evaluated with five different random seeds
}4095,1023,255,128,1{is . Table 1 shows the results of the 25 -fold cross validation for the 

accelerometer dataset. To find the best classifier for the dataset, a paired two-tailed t-test was 

performed between the J48 and all other classifiers with a significance level 05.0 . Since all the p-

values are below the significance level, there is strong statistical evidence that J48 is more accurate 

than all other classifiers in the tested dataset. 

 

Table 1: Percentage Classification accuracy given by the 25 -fold cross validation 

 
s1 s2 s3 s4 s5 Avg. p-value 

BN 76.8211 77.8112 77.1924 77.3868 77.2984 77.302 <0.001 
MLP 93.9003 94.4484 93.8649 93.8649 94.1478 94.045 0.001 
NB 58.0622 57.6025 57.4257 57.7086 56.4887 57.457 <0.001 
J48 94.9788 95.1556 95.0318 95.4031 95.2086 95.156 - 
RT 93.6704 94.4031 94.4837 94.6782 94.5191 94.351 0.004 

RBFNet 72.0297 71.7999 71.0396 73.0375 72.7723 72.136 <0.001 
SMO 89.4802 89.7808 90.1167 90.2758 89.71 89.872 <0.001 

Logistic 91.9024 92.6096 92.4505 92.7157 91.7786 92.291 <0.001 

 

Since, 2-fold cross validation takes into account only half of the dataset during training, it is  
essential to point out that a 25 -fold cross validation is not performed to measure the classification 

accuracy but to rather find differences in the overall accuracy of the classifiers. To measure the actual 

classification accuracy, a 105 -fold cross validation was performed on the dataset. After evaluating 

the best classifiers in each dataset for all five random seeds, the overall accuracy for J48 classifier 

reached 96.02% (see Table 2). A more detailed analysis was carried out for each activity by calculating 

a number of performance metrics.  

 
Table 2: Evaluation metrics for the best classifier: precision, recall, F-measure, FPR, FNR for J48. 

Overall Accuracy: 96.0219%

J48 Walking Jogging Stairs Sitting Standing LyingDown 
Precision 0.971 0.92 0.851 0.967 0.957 0.964 

Recall 0.98 0.875 0.845 0.958 0.973 0.948 
F-measure 0.975 0.897 0.848 0.963 0.965 0.956 

FPR 0.019 0.003 0.007 0.012 0.008 0.004 
FNR 0.020 0.125 0.155 0.041 0.027 0.052 

3.2. Online Recognition via two new subjects (subject-dependent) 

In order to generate predictions on the user’s activity, the alphanumeric representation of the 

Decision Tree model, as given by the WEKA output, was implemented in Java. Thus, the results 

presented here are more realistic. For this experiment, two individuals A and B who were new to the 

system were employed. During training mode, each user used the smartphone HAR application for 

annotating the activity they were performing for a certain amount of time. Meantime, the smartphone 

activity recognition application directly computes the classified activity using J48 algorithm, the 
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confusion matrices and displayed on the phone. Table 3 (A) and (B) display the confusion matrices for 

J48 classifier for both individuals. 

Table 3: Confusion matrix for Individuals A and B 
  Individual A‐Predicted Class (Overall Accuracy: 92.36%) 

Walking  Jogging Stairs Sitting Standing LyingDown 

 A
ct
u
al
 C
la
ss
  Walking  30  0 1 0 0 0 

Jogging  0  19 0 0 0 0 

Stairs  0  1 39 0 0 0 

Sitting  1  0 0 7 5 0 

Standing  0  0 0 3 62 0 

LyingDown  0  0 0 2 0 0 

 
  Individual B‐ Predicted Class (Overall Accuracy 97.30%) 

Walking  Jogging Stairs Sitting Standing LyingDown 

 A
ct
u
al
 C
la
ss
  Walking  60  0 0 0 0 1 

Jogging  0  12 0 1 0 0 

Stairs  0  0 4 0 0 0 

Sitting  0  0 0 18 0 0 

Standing  0  0 0 0 0 0 

LyingDown  0  0 0 1 0 14 

 

The confusion matrices show that the overall accuracy for individual A is quite lower (92.36%) than 

individual B (97.30%). However, the accuracies achieved show encouraging results even though these 

two individuals were not part of the training phase. The discrepancies in the results can be inferred that 

the gait and the intensity at which activities are performed are individual specific. Also, individuals A 

and B were of different physical characteristics than the participants who collected training data for 

offline analyses. 

4. Conclusions 

This work proposes the idea of online Human Activity Recognition system that focuses on using 

unobtrusive devices and services for the designated context aware features. The evaluation indicates 

that the J48 classifier using a window size of 512 samples with 50% overlapping yields the highest 

accuracy (i.e., up to 96.02%). To achieve this peak accuracy, time domain features were extracted from 

raw accelerometer data using smartphone. This system partially integrates the WEKA API in the 

Android Platform to enable the recognition of different activities. The system does not require a server 

for feature extraction and processing, thus, reducing the energy expenditures and making it more 

robust and responsive. The mobile HAR system is flexible, as performing the recognition and feature 

extraction computations locally on the smartphone mitigates the server load.  
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