Mass Spectral Matching for Compound Identification In
Metabolomics: An Open-Source Python/Shiny Package

INTRODUCTION

Accurate compound identification is essential for mass spectrometry-based
metabolomics. The most common strategies are chemical structure library
searching and spectral library searching, both of which depend on measuring the
similarity between an unknown spectrum and reference spectra, either acquired
experimentally or generated in silico. The quality of the similarity metric plays a
central role in reliable identifications. To address this need, we developed
PyCompound, a Python/Shiny package that provides an interactive graphical
interface for mass spectral matching. PyCompound accommodates both
nominal-resolution data (e.g., GC-MS) and high-resolution data (e.g., LC-
MS/MS). It offers flexible preprocessing pipelines, including filtering, weight factor
and low entropy transformations, centroiding, noise reduction, and customizable
spectral matching. In addition to conventional cosine and binary similarity
measures, PyCompound implements entropy-based metrics such as Shannon,
Tsallis, and Reényi correlations, which can be combined into custom mixture
measures with user defined weights. The package supports both untargeted and
targeted workflows, includes a command line mode for batch analyses, and
allows fine tuning of parameters when reference libraries with compound
annotations are used.

METHODS

PyCompound offers a plethora of spectrum preprocessing transformations and
similarity measures.

« Spectrum preprocessing transformations:
Filtering based on m/z and/or intensity
Weight factor transformation
Low-entropy transformation
Centroiding
Matching ion fragments of two spectra
« Similarity measures:
« Cosine (aka dot product)
« Three entropy-based similarity measures: Shannon [1], Rényi, and Tsallis [2]
« 14 binary similarity measures: Jaccard, Dice, 3W-Jaccard, Sokal-Sneath,
Cosine, Mountford, McConnaughey, Driver-Kroeber, Simpson, Braun-Banquet,
Fager-McGowan, Kulczynski, Intersection, Hamming, and Hellinger [3]

PyCompound has three main utilities:

« Perform spectral library matching to identify unknown compounds

« Given a library of known compounds, perform (multithreaded) grid search to
determine the hyperparameters which maximize identification accuracy.

« Generate a plot of two spectra before and after preprocessing transformations

Specifically, PyCompound’s novelty lies in (i) the novel Rényi Entropy Similarity
Measure and (ii) its ability to allow a user to easily specify the order of spectrum
preprocessing transformations without necessarily having to write code.

Raw Query Spectrum and
Raw Reference Spectrum

NRMSl "lRMS

Figure 1. Examples of various
spectrum preprocessing workflows

capable with PyCompound. The
spectrum preprocessing transformations
available in the blue boxes can be

[Filterin] [Weight Factor J [Weight Factor]
g Transformation g Transformation
| Centroiding [Noise Removal]

Low-Entropy

) (Wotee romovet |

Transformation [Low-Entropy] [Matcmng] performed in any user-specified order.
Transformation NRMS: nominal-resolution mass
‘ ‘ spectrometry. HRMS: high-resolution
mass spectrometry.
| Compute Similarity Score |
Main Menu
PyCompound
Figure 2.
Overview: Shiny PyCompound interface.

PyCompound is a Python-based tool designed for performing spectral library matching on either high-resolution mass spectrometry data {HRMS) or low-resolution mass spectrometry data (NRMS). PyCompound offers a range of spectrum preprocessing
transformations and similarity measures. These spectrum preprocessing transformations include filtering on mass/charge and/or intensity values, weight factor transformation, low-entropy transformation, centroiding, noise remaval, and matching. The
available similarity measures include the canonical Cosine similarity measure, three entropy-based similarity measures, and a variety of binary similarity measures: Jaccard, Dice, 3W-Jaccard, Sokal-Sneath, Binary Cosine, Mountford, McConnaughey, Driver-
Kroeber, Simpson, Braun-Banguet, Fager-McGowan, Kulczynski, Intersection, Hamming, and Hellinger.

Select options:

Specify chromatography platform:
O HRMS

NRMS

Run spectral library matching to perform compound

Plat two spectra before and after preprocessing
ions. identification on a query library of spectra.

Normalized Intensity
o
|
I
[]

Normalized Intensity
o
|
1
i

Similarity Measure: Cosine

Similarity Score: 0.9946

Spectrum Preprocessing Order: FCNMWL
High Quality Reference Library: False
Window Size (Centroiding): 0.5

Window Size (Matching): 0.5

RESULTS

PyCompound was demonstrated using two well established spectral libraries: the NIST
GC-MS Webbook and a GNPS derived LC-MS/MS collection. These case studies show
that the tool can be applied across both nominal and high-resolution data, and that it
successfully integrates entropy-based similarity measures alongside traditional
approaches.

Table 1. Example compound identification output from GC-MS data generated by PyCompound. The top
three matches for each query compound are shown.

Query Spectrum ID RANK.1.PRED RANK.2.PRED RANK.3.PRED RANK.1.SIMILARITY RANK.2.SIMILARITY RANK.3.SIMILARITY

ID_1 616386 922689 1912283 0.752204811 0.742321126 0.680327002

ID_2 503286 877894 107255 0.961996437 0.806852602 0.791218167

= Spectrum ID 1: 100
m—— Spectrum ID 2: Hectochlorin M+H

Untransformed Spectra

=
|

|
=]
1

260 3(I}D 4(I}D 560 G(I}D .
m/z Figure 3. Example plot
generated by PyCompound.

Transformed Spectra

=
|

I
]
1

| | | | |
200 300 400 500 e00
my'z

Raw-5cale M/Z Range: [217.7,628.8]

Raw-5cale Intensity Range: [3885.0,5549140.0]
Meoise Threshold: 0.0

Weight Factors (m/z,intensity): (0.0,1.0)
Low-Entropy Threshold: O

 New software tool PyCompound was developed to assist wet-lab researchers in
performing compound identification on mass spectrometry data
(https://github.com/hdlugas/pycompound).
« Shiny web application (https://fy7392.shinyapps.io/pycompound/)
« Python package ‘pycompound’ (https://pypi.org/project/pycompound/).
« Command line version capable of finding optimal hyperparameters given known

compound identities.

« PyCompound was applied to two publicly available real-world datasets
(https://zenodo.org/records/12786324) [4]:
« WebNIST GC-MS
« GNPS LC-MS/MS

CONCLUSION

PyCompound provides a user-friendly framework for mass spectral matching. By
combining established and novel similarity metrics with customizable preprocessing
options, it offers a practical resource for enhancing compound identification in both
research and applied metabolomics workflows.

REFERENCES

1. Li, Y., Kind, T., Folz, J. et al. (2021) Spectral entropy outperforms MS/MS dot product similarity for small-
molecule compound identification. Nat Methods, 18 1524—-1531. https://doi.org/10.1038/s41592-021-01331-z.

2. Dlugas H, Zhang X, Kim S. Comparative analysis of continuous similarity measures for compound
identification in mass spectrometry-based metabolomics. Chemometr Intell Lab Syst. 2025 Aug
15;263:105417. doi: 10.1016/j.chemolab.2025.105417. Epub 2025 May 3. PMID: 40453508; PMCID:
PMC12121958.

3. Kim S, Kato |, Zhang X. Comparative Analysis of Binary Similarity Measures for Compound ldentification in
Mass Spectrometry-Based Metabolomics. Metabolites. 2022 Jul 26;12(8):694. doi: 10.3390/metabo12080694.
PMID: 35893261; PMCID: PMC9394311.

4. Dlugas, H., Zhang, X., & Kim, S. (2024). Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS)
and Gas Chromatography - Mass Spectrometry (GC-MS) Reference Libraries from Global Natural Products
Social Molecular Networking (GNPS) and National Institute of Standards and Technology (NIST) WebBook
Processed for Spectral Library Matching (V1.0) [Data set]. Zenodo.

https://sciforum.net/event/IECM 2025

https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://doi.org/10.1038/s41592-021-01331-z
https://github.com/hdlugas/pycompound
https://fy7392.shinyapps.io/pycompound/
https://pypi.org/project/pycompound/
https://zenodo.org/records/12786324

	Slide 1

