The 4th International Electronic Conference on Metabolomics

3-15 October 2025 | On

Mass Spectral Matching for Compound Identification in Metabolomics: An Open-Source Python/Shiny Package

Hunter Dlugas^{1,2}, Ikuko Kato^{1,3,5}, Jing Li^{1,4}, Xiang Zhang⁶, Seongho Kim^{1,2}

¹Department of Oncology, School of Medicine, Wayne State University ²Biostatistics and Bioinformatics Core, Karmanos Cancer Institute, Wayne State University ³Department of Pathology, School of Medicine, Wayne State University ⁴Pharmacology and Metabolomics Core, Karmanos Cancer Institute, Wayne State University ⁵Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center ⁶Department of Chemistry, University of Louisville

INTRODUCTION

Accurate compound identification is essential for mass spectrometry-based metabolomics. The most common strategies are chemical structure library searching and spectral library searching, both of which depend on measuring the similarity between an unknown spectrum and reference spectra, either acquired experimentally or generated in silico. The quality of the similarity metric plays a central role in reliable identifications. To address this need, we developed PyCompound, a Python/Shiny package that provides an interactive graphical interface for mass spectral matching. PyCompound accommodates both nominal-resolution data (e.g., GC-MS) and high-resolution data (e.g., LC-MS/MS). It offers flexible preprocessing pipelines, including filtering, weight factor and low entropy transformations, centroiding, noise reduction, and customizable spectral matching. In addition to conventional cosine and binary similarity measures, PyCompound implements entropy-based metrics such as Shannon, Tsallis, and Rényi correlations, which can be combined into custom mixture measures with user defined weights. The package supports both untargeted and targeted workflows, includes a command line mode for batch analyses, and allows fine tuning of parameters when reference libraries with compound annotations are used.

METHODS

PyCompound offers a plethora of spectrum preprocessing transformations and similarity measures.

- Spectrum preprocessing transformations:
 - Filtering based on m/z and/or intensity
 - Weight factor transformation
- Low-entropy transformation
- Centroiding
- Matching ion fragments of two spectra
- Similarity measures:
- Cosine (aka dot product)
- Three entropy-based similarity measures: Shannon [1], Rényi, and Tsallis [2]
- 14 binary similarity measures: Jaccard, Dice, 3W-Jaccard, Sokal-Sneath, Cosine, Mountford, McConnaughey, Driver-Kroeber, Simpson, Braun-Banquet, Fager-McGowan, Kulczynski, Intersection, Hamming, and Hellinger [3]

PyCompound has three main utilities:

- Perform spectral library matching to identify unknown compounds
- Given a library of known compounds, perform (multithreaded) grid search to determine the hyperparameters which maximize identification accuracy.
- Generate a plot of two spectra before and after preprocessing transformations

Specifically, **PyCompound**'s novelty lies in (i) the novel Rényi Entropy Similarity Measure and (ii) its ability to allow a user to easily specify the order of spectrum preprocessing transformations without necessarily having to write code.

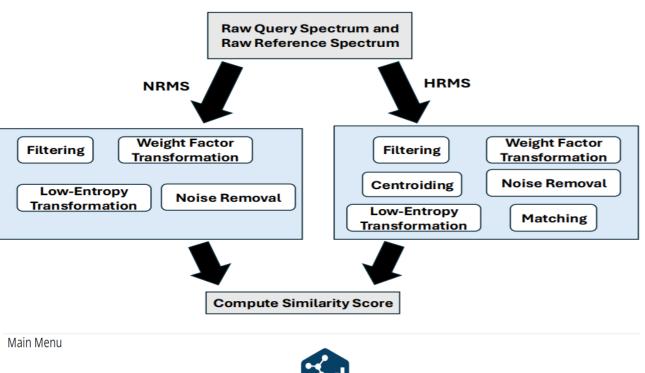


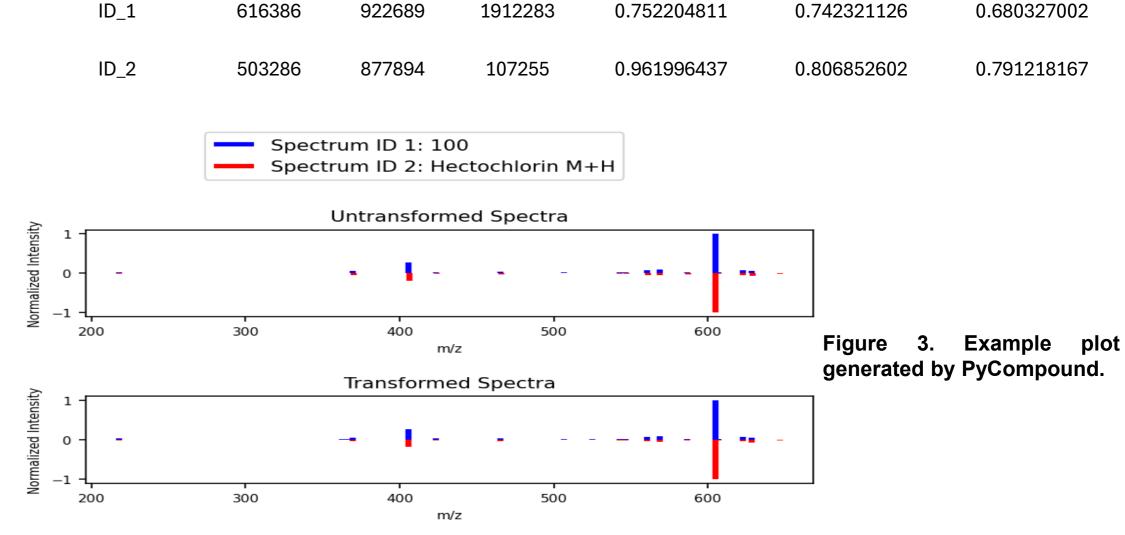
Figure 1. Examples of various spectrum preprocessing workflows with PyCompound. The capable spectrum preprocessing transformations available in the blue boxes can be performed in any user-specified order. NRMS: nominal-resolution HRMS: high-resolution spectrometry. mass spectrometry.

Figure 2.

lable similarity measures include the canonical Cosine similarity measure, three entropy-based similarity measures, and a variety of binary similarity measures: Jaccard, Dice, 3W-Jaccard, Sokal-Sneath, Binary Cosine, Mountford, McConnaughey, Drive

PyCompound

Run spectral library matching to perform compound identification on a query library of spectra.


Shiny PyCompound interface.

RESULTS

PyCompound was demonstrated using two well established spectral libraries: the NIST GC-MS Webbook and a GNPS derived LC-MS/MS collection. These case studies show that the tool can be applied across both nominal and high-resolution data, and that it successfully integrates entropy-based similarity measures alongside traditional approaches.

Table 1. Example compound identification output from GC-MS data generated by PyCompound. The top three matches for each query compound are shown.

Query Spectrum ID RANK.1.PRED RANK.2.PRED RANK.3.PRED RANK.1.SIMILARITY RANK.2.SIMILARITY RANK.3.SIMILARITY

Raw-Scale M/Z Range: [217.7,628.8] Similarity Measure: Cosine Raw-Scale Intensity Range: [3885.0,5549140.0] Spectrum Preprocessing Order: FCNMWL Noise Threshold: 0.0 High Quality Reference Library: False Weight Factors (m/z,intensity): (0.0,1.0) Window Size (Centroiding): 0.5 Low-Entropy Threshold: 0 Window Size (Matching): 0.5

- New software tool PyCompound was developed to assist wet-lab researchers in performing compound identification on mass spectrometry data (https://github.com/hdlugas/pycompound).
 - Shiny web application (https://fy7392.shinyapps.io/pycompound/)
 - Python package 'pycompound' (https://pypi.org/project/pycompound/).
 - Command line version capable of finding optimal hyperparameters given known compound identities.
- PyCompound was applied to two publicly available real-world datasets (https://zenodo.org/records/12786324) [4]:
 - WebNIST GC-MS
 - **GNPS LC-MS/MS**

CONCLUSION

PyCompound provides a user-friendly framework for mass spectral matching. By combining established and novel similarity metrics with customizable preprocessing options, it offers a practical resource for enhancing compound identification in both research and applied metabolomics workflows.

REFERENCES

- 1. Li, Y., Kind, T., Folz, J. et al. (2021) Spectral entropy outperforms MS/MS dot product similarity for smallmolecule compound identification. Nat Methods, 18 1524–1531. https://doi.org/10.1038/s41592-021-01331-z.
- 2. Dlugas H, Zhang X, Kim S. Comparative analysis of continuous similarity measures for compound identification in mass spectrometry-based metabolomics. Chemometr Intell Lab Syst. 2025 Aug 15;263:105417. doi: 10.1016/j.chemolab.2025.105417. Epub 2025 May 3. PMID: 40453508; PMCID: PMC12121958.
- 3. Kim S, Kato I, Zhang X. Comparative Analysis of Binary Similarity Measures for Compound Identification in Mass Spectrometry-Based Metabolomics. Metabolites. 2022 Jul 26;12(8):694. doi: 10.3390/metabo12080694. PMID: 35893261; PMCID: PMC9394311.
- 4. Dlugas, H., Zhang, X., & Kim, S. (2024). Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) and Gas Chromatography - Mass Spectrometry (GC-MS) Reference Libraries from Global Natural Products Social Molecular Networking (GNPS) and National Institute of Standards and Technology (NIST) WebBook Processed for Spectral Library Matching (V1.0) [Data set]. Zenodo.