

The 4th International Electronic Conference on Processes

20-22 October 2025 | Online

SEPARATION OF CO, AND H, S MIXTURE

Adham Norkobilov ¹, Rakhmatullo Muradov² Sanjar Ergashev³, Zafar Turakulov³, Abdulaziz Bakhtiyorov¹ ¹ Karshi State Technical University, Faculty of Food Engineering in Shahrisabz ² Shurtan Gas Chemical Complex

³ Tashkent Institute of Chemical Technology, Department of Automation and Digital Control

INTRODUCTION & AIM

Carbon dioxide (CO₂) and hydrogen sulfide (H₂S) separation from sour gas streams is vital for emission control and gas purification. This study presents an Aspen Plus rate-based simulation of a chemical absorption process using various solvents for CO₂/H₂S removal. Two gas streams from the Shurtan Gas Chemical Complex were modeled: a raw feed (3.42% CO₂, 0.09% H₂S) and a treated gas (2.1% CO₂). Optimal absorber operation (40-45 °C) and solvent circulation achieved over 98.6% CO₂ and 99.9% H₂S removal, with 2.3 GJ/t CO₂ regeneration energy. The captured CO₂ is utilized in sodium carbonate production at the Dehkanabad Potash Plant, converting 20 t/h CO₂ into 296,000 t/year soda (77% efficiency). This model demonstrates a scalable, low-energy pathway for carbon capture and utilization (CCU) in the Uzbek chemical sector.

METHOD

- Simulation tool: Aspen Plus V12
- **Approach:** Rate-based absorption-regeneration model
- Chemical System: CO₂–H₂S–CH₄–H₂O mixture
- **Key Equipment:** Absorber and Stripper columns
- **Objective:** ≥99.5% CO₂ purity, ≥98% removal
- **Optimization Variables:**

Solvent type and flow rate

Absorber temperature (40–45 °C)

Reboiler duty (minimized)

SIMULATION RESULTS			
Parameter	Raw Gas	Treated gas	Removal efficiency
CO ₂ (%)	3.42	0.05	98.6%
H ₂ S (%)	0.09	<0.001	99.9%
Temperature (°C)	40–45		
Regeneration energy (GJ/t CO ₂)		2.3	
CO ₂ Purity (%)		≥99.5	

TECHNO-ECONOMIC EVALUATION

Indicator	Value	
CO ₂ Capture rate	20 t/h	
Na ₂ CO ₃ production	296,000 t/year	
Process efficiency	77%	
Estimated energy cost	2.3 GJ/t CO ₂	
Payback potential	<5 years (for integrated CCU system)	

Captured CO₂ reuse reduces both flaring emissions and natural gas consumption in Dehkanabad's soda process.

IMPLEMENTATION PATH TIMELINE (PLANNED)

Year	Stage	Focus
2026	Pilot simulation validation	Shurtan CO₂ absorption unit
2027–2028	Pilot-scale integration	Continuous absorber—stripper testing
2028	Industrial demonstration	Dehkanabad Potash Plant integration
2029–2030	Commercial operation	Full CCU implementation (20 t/h CO ₂ \rightarrow 296 kt Na ₂ CO ₃ /year)

CONCLUSION

- CO₂ and H₂S removal efficiency exceeded 98.6% and 99.9%, respectively.
- Energy consumption (2.3 GJ/t CO₂) meets industrial benchmarks.
- Feasible for scale-up to industrial CCU applications in Uzbekistan.

REFERENCES

Adhi, Tri Partono et al. H2S–CO2 gas separation with ionic liquids on low ratio of H2S/CO2. Heliyon, Volume 7, Issue 12, 2021