

The 4th International Electronic Conference on Processes

20-22 October 2025 | Online

BIODEGRADABLE SMART FILM USING JACKFRUIT (*Artocarpus heterophyllus*) SEED STARCH AND BEETROOT (*Beta vulgaris*) EXTRACT AS A FRESHNESS INDICATOR

W.G.H.I.Adikari, K.G.P.N.Bandara

Department of Food Science & Technology, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka

INTRODUCTION & AIM

- Food safety, quality deterioration, and postharvest losses are major global concerns.
- Smart packaging has emerged as a critical solution to address these challenges.
- The global smart packaging market is projected to reach USD 34.35 billion by 2030 with a CAGR of 7.12%.
- Jackfruit seed starch (JSS) is a promising biodegradable polymer due to its high amylose content and strong filmforming ability.
- Beetroot extract (BE), rich in natural betalain pigment, provides pH sensitivity and freshness indication.

Objective

 To develop a smart bio polymeric film using jackfruit seed starch with beetroot extract as a natural freshness indicator.

METHOD

Extracting jackfruit seed starch by the distilled water method

Extracting beetroot extraction via 50% ethanol-water extraction method

Preparing films as C, F1, F2, F3 by incorporating 0 ml, 10 ml, 7 ml and 4 ml beet root extract

Preparing the bio polymeric films by casting technique at 50 °C for 24 hours

Measuring the physical and mechanical properties of the films

Determining the biodegradability for the all formulations

Evaluating the pH sensitivity of films using 1-13 buffer solutions

Figure 01: Procedure of preparing the bio polymeric film from jackfruit seed starch

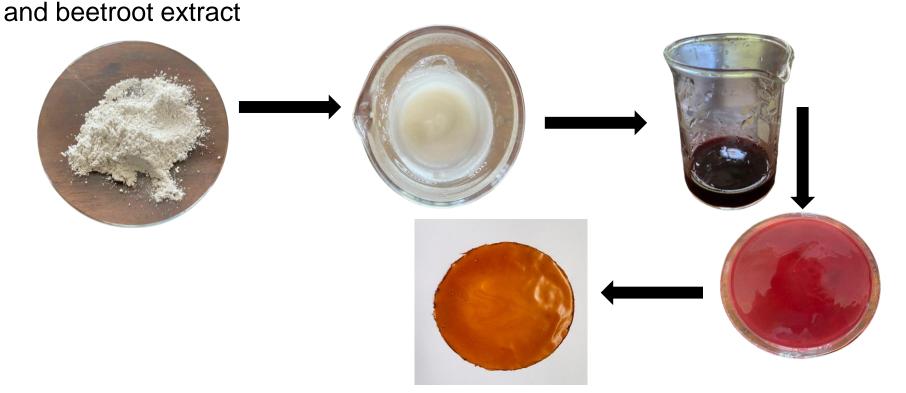


Figure 02: Graphical illustration of the preparation process of bio polymeric films from jackfruit seed starch and beetroot extract.

RESULTS & DISCUSSION

Table 01: Physical and mechanical properties of the prepared films

Property of the film	Control (C)	F1	F2	F3
Water activity	0.662 ± 0.003 ^b	0.674 ± 0.004 ^a	0.627 ± 0.003°	0.671 ± 0.002 ^a
Moisture content (%)	20.786 ± 0.035 ^a	17.130 ± 0.137 ^b	10.596 ± 0.106 ^d	12.953 ± 0.056 ^c
WVTR (%)	12.957 ± 0.059 ^c	14.722 ± 0.010 ^a	11.636 ± 0.082 ^d	14.281 ± 0.015 ^b
Water solubility (%)	27.143 ± 0.111°	33.330 ± 0.020 ^b	33.330 ± 0.000 ^b	37.490 ± 0.079 ^a
Biodegradabilit y (%)	91.513 ± 0.189 ^b	94.837 ± 0.552 ^a	92.003 ± 0.115 ^b	88.050 ± 0.437 ^c
Hardness (g)	221.40	258.40	422.40	188.40

Note: C= Without beetroot extract, F1= 10 ml beetroot extract, F2= 7 ml beetroot extract, F3= 4 ml beetroot extract

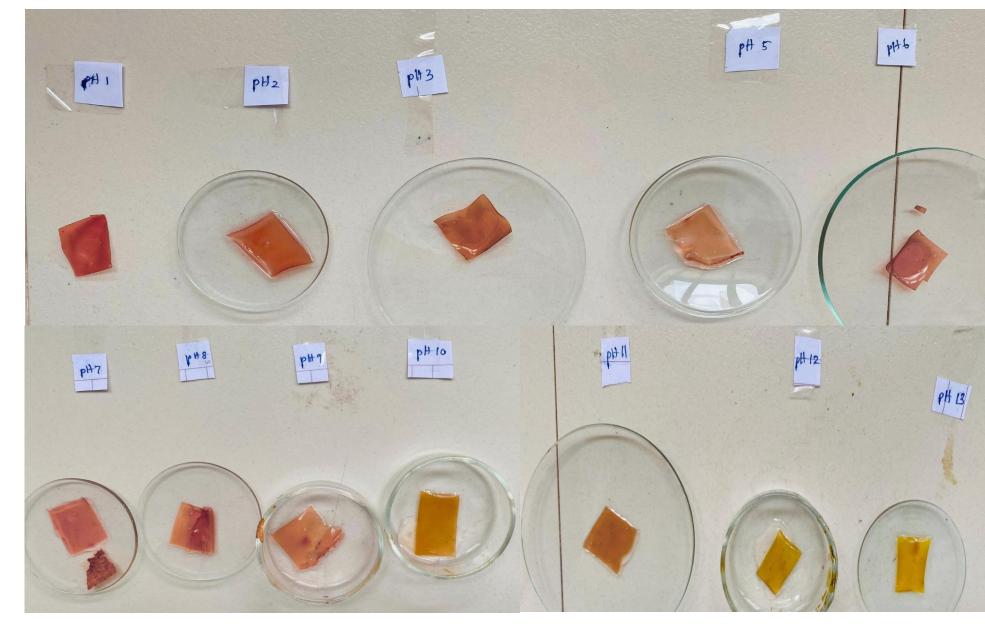


Figure 03: pH sensitivity of F1 film to the buffer solutions from 1-13

CONCLUSION

- The F2 film (7 ml beetroot extract) exhibited the best balance of physical, mechanical, and barrier properties, making it the most suitable formulation.
- The developed biofilm demonstrated clear pH-sensitive color changes, proving its potential as a natural freshness indicator and an eco-friendly alternative for sustainable food packaging.

REFERENCES

- Abdul Azis, F.L., Khairul, W.M., Daud, A.I. and Sarbon, N.M. (2025). Active and intelligent pH-sensing food packaging developed by incorporation of red cabbage extracts in chicken gelatin-based composite films. Food Research, 9(3), pp.76–87. doi:https://doi.org/10.26656/fr.2017.9(3).041
- Ningsih, P., Rahmawati, S., Santi, N.M.N., Suherman and Diah, A.W.M. (2021). Making Edible Film from Jackfruit Seed Starch (Artocarpus Heterophyllus) with the Addition of Rosella Flower Extract (Hibiscus Sabdariffa L.) as Antioxidant. *International Journal of Design & Nature and Ecodynamics*, 16(6), pp.691–699. doi:https://doi.org/10.18280/ijdne.160611.