

The 4th International Electronic Conference on Processes

20-22 October 2025 | Online

Investigating Environmental Factors Influencing the Biodegradation of Heavy Oil in the Natural **Environment**

Shakir Ali¹, Young-Cheol Chang ¹ *

¹ Course of Chemical and Biological Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan

INTRODUCTION & AIM

The complicated hydrocarbon structure, high molecular weight, and great viscosity of heavy oil make it a major environmental problem.

The biodegradation of heavy oil in the natural environment is influenced by various factors such as the diversity and abundance of microbiota, pH, temperature, oxygen availability, and other environmental factors

In this study, we aimed to investigate the biodegradability of heavy oil using the microbial community of soil and water under aerobic and anaerobic conditions.

RESULTS & DISCUSSION Presence or Absence of Heavy Oil Peaks after Presence or Absence of Heavy Oil Peaks after GC Analysis of Heavy Oil Biodegradation **Biodegradation in Anaerobic Conditions Biodegradation in Aerobic Conditions** \odot Peak (2) | Peak (3) | Peak (4) | Peak (5) | Peak (6) | Peak (7) | Peak (8) | Peak (9) | Peak (10) 0 Figure: GC Analysis of Heavy Oil (Control peaks) Aerobic Biodegradation of Heavy Oil by Water and Soil Microbial Community Anaerobic Biodegradation of Heavy Oil by Water and Soil Microbial Community (a) (a) 120 60 20 Time (weeks) Figure 2. (a) Aerobic Biodegradation Test Results of Heavy Oil (Water Sample), (b) Aerobic Figure 7. (a) Anaerobic Biodegradation Test Results of Heavy Oil (Water Sample), (b) Anaerobic Biodegradation Test Results of Heavy Oil (Soil Sample). biodegradation test results for heavy oil (soil samples) Effect of Microbial count (CFU) on Biodegradation of Heavy oil in Aerobic Effect of Microbial count (CFU) on Biodegradation of Heavy oil in Anaerobic conditions conditions

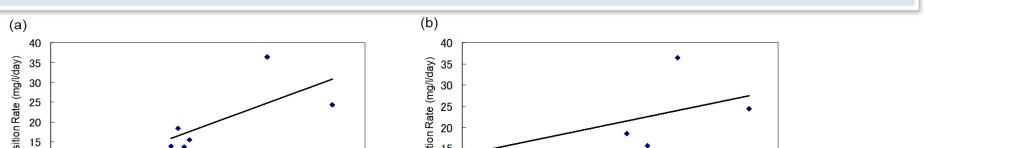


Figure 5. (a) Correlation Between the Biodegradation Rate of Heavy Oil and the Total Bacteria Count in Soil

Samples Under Aerobic Conditions (b) Correlation Between Biodegradation Rate of Heavy Oil and Oil-

Degrading Bacteria Count in Soil Samples Under Aerobic Conditions.

degradation performance revealed higher counts heterotrophic and oil-degrading bacteria generally enhanced biodegradation.

was found, the

between populations initial

LOG (Tot. Bacterial Count (CFU / ml)) Figure 8. (a) Correlation Between Degradation Rate of Heavy Oil and Total Bacterial Count in Water Sample Under Anaerobic Conditions; (b) Correlation Between Degradation Rate of Heavy Oil and Heavy Oil-Degrading Bacterial Count in Water Sample **Under Anaerobic Conditions** (a) y = 10.801x - 59.762 $R^2 = 0.1714$ ව් 25 출 20 10

LOG (Tot. Bacterial Count (CFU / ml))

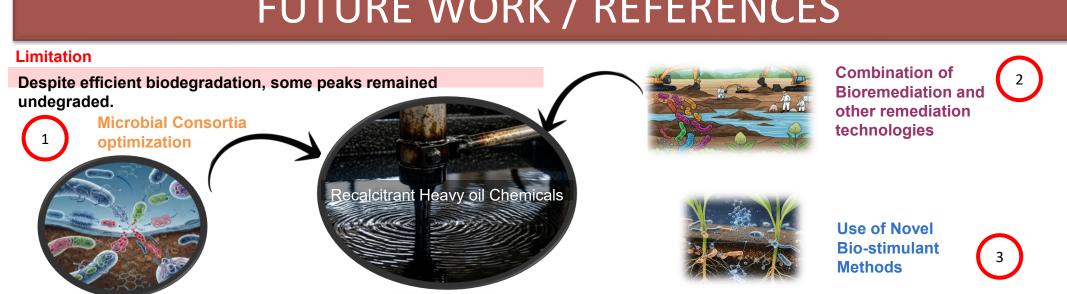
y = 2.4277x + 1.7454

 $R^2 = 0.369$

 $R^2 = 0.2149$ LOG (Tot. Bacterial Count (CFU / ml)) y = 6.2058x - 22.856 $R^2 = 0.3033$ 25

LOG (Tot. Bacterial Count (CFU / ml))

y = 1.5504x + 6.8278


Figure 9. (a) Correlation Between Degradation Rate of Heavy Oil and Total Bacterial Count in Soil Sample Under Anaerobic Conditions. (b) Correlation Between Degradation Rate of Heavy Oil and Heavy Oil-Degrading Bacterial Count in Soil Sample Under Anaerobic Conditions.

CONCLUSION

LOG (Tot. Bacterial Count (CFU / ml))

Heavy oil biodegradability is higher in soil under aerobic conditions compared to water, while under anaerobic conditions, it decreases. Microbial source and oxygen availability influence heavy oil degradation. Future studies should focus on enhancing microbial activity and hydrocarbon degradation in aquatic systems. Bioremediation using microbial consortia is effective for heavy oil contamination, and maintaining aerobic conditions through aeration could improve cleanup.

FUTURE WORK / REFERENCES

