

P processes

PASSIVE COOLING AND HEATING STRATEGIES FOR ENERGY-EFFICIENT BUILDINGS: A STUDY FOR SUSTAINABLE ENVIRONMENTALLY FRIENDLY GREEN

DESIGN PROCESSES

Shah Nawaz¹, Khadija Adan², Kumail Abbas¹, Syeda Mahwish Zahra³, Syyed Adnan Raheel Shah^{1*}

¹Department of Civil Engineering, NFC Institute of Engineering and Technology, Multan 66000, Pakistan ²Department of Architecture Design, NFC Institute of Engineering and Technology, Multan 66000, Pakistan

²Department of Architecture Design, NFC Institute of Engineering and Technology, Multan 66000, Pakistan ³Laboratory of Materials, Department of Architecture Design, NFC Institute of Engineering and Technology, Multan 66000, Pakistan

ABSTRACT

Natural cooling and heating strategies have gained significant attention due to their ability to dissipate heat without electricity, particularly through radiative cooling (RC), especially in tropical climate areas, is essential in achieving sustainable and energy-efficient architecture. However, normal methods are often limited due to some environmental factors such as sunlight, rainfall and also snowfall constrained their effectiveness. To control these factors behavior, we study about the thermal performance of two exterior wall materials—weather paint and red gutka bricks (Multani Tiles) during daytime or under high temperature through an integrated experimental and computational approach. The weather paint reflects almost 60-70% of sunlight depends upon their thickness and texture. Also, the red gutka bricks reduce temperature from 5°C - 10°C on similar properties. Experimental investigations include building-controlled sections of walls with both materials and capturing surface temperature variations using an infrared heat gun under different weather conditions. Simultaneously, four parametric building models have been developed in Revit, two for hot and two for cold climates, incorporating advanced passive design strategies such as optimized orientation, thermal mass integration, and adaptive insulation techniques. A comparative energy performance assessment is performed using Revit's simulation tools to assess the impact of wall material selection on thermal performance and indoor comfort levels. By combining experimental results with synthetic energy modelling data, this study offers a significant understanding of material efficacy in passive climate adaptation for sustainable environmentally friendly green practices aligned with climate-responsive design principles.

INTRODUCTION

Sustainable construction will become very important in future because construction sector uses a lot of energy and causes increase of carbon emissions day by day. In hot climate areas like Multan, people rely on artificial means in summer season. To reduce cost and energy consumption, the use of materials that reduce inner temperature of building is necessary. For this purpose, Gutka tiles (Multani Tiles) and weather paints are compared. This analysis includes experimental testing and Revit models' simulation to compare the resistance and performance of Gutka tiles and Weather paints in different weather conditions. The results will help us to understand green building practices and selection of such materials that are sustainable and eco-friendly for buildings in extreme weather conditions.

METHODOLOGY

Problem Identification

(Need for Passive Cooling and Heating)

Material Selection

(Gutka Tiles and Weather Paint)

Experimental Testing

(IR Heat Gun, Surface Temperature Analysis)

Revit Modeling

(Hot and Cold Climate Models)

Energy Simulation

(Indoor Comfort & Efficiency)

Comparative Analysis

(Performance Evaluation)

Final Result & Evaluation

(Suitable Material Selection)

RESULT & ANALYSIS

PERFORMANCE ANALYSIS SUMMARY

Table 1: Gutka Tile (Multani Bricks)

Key Parameter	value
Total Carbon	29,141.31 kgCO2e
Embodied Carbon	22,784.75 kgCO2e
Operational Carbon	6,356.56 kgCO2e
Annual EUI	$323.83 kWh/m^2$
Wall Performance	High thermal mass,
	delays heat gain 5–10°C

High thermal mass delays heat by 5–10°C, making it effective for passive cooling in hot climates, though with higher embodied carbon.

Table 2: Weather Paint

Key Parameter Value

Total Carbon29,036.38 kgCO2eEmbodied Carbon22,678.43 kgCO2eOperational Carbon6,357.94 kgCO2eAnnual EUI323.91 kWh/m²Wall PerformanceReflects 60–70% solar heat

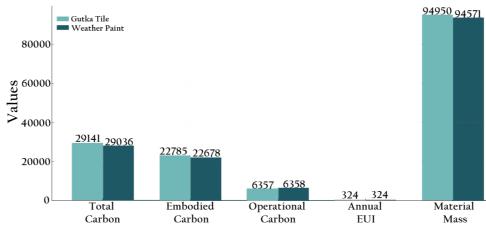
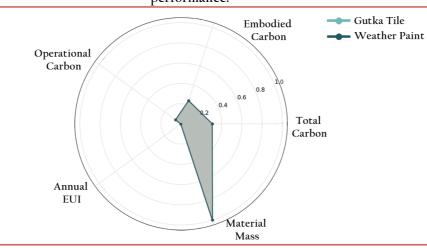
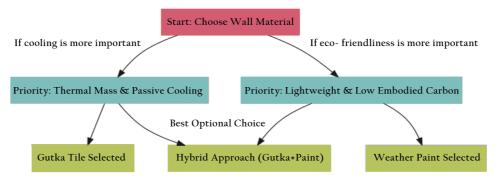

Reflects 60-70% solar heat, lowers footprint and is lighter, but less effective in extreme hot climates.

Table 3: Comparative Summary


Gutka Tile	Weather Paint
29,141.31	29,036.38 (Better)
22,784.75	22,678.43 (Better)
6,356.56 (Better)	6,357.94
323.83 (Better)	323.91
Thermal mass	Reflects heat
(better hot climate)	(better mild climate)
	29,141.31 22,784.75 6,356.56 (Better) 323.83 (Better) Thermal mass

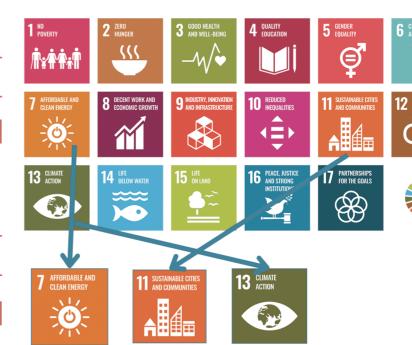
Both useful, but Gutka tiles are more preferable for Multan's hot climate due to stronger passive cooling.

COMPARISON (GUTKA VS PAINT)



The results show that Weather paint slightly outperforms Gutka tile in terms of lower carbon values, while both options are almost equal in operational performance.

The chart shows that Weather paint has lower carbon impact, while Gutka tiles provide better thermal mass and cooling benefits for hot climates.


DECISION FLOW CHART

THEME

Passive cooling and heating strategies pave the way for greener futures, directly advancing SDG 7 (Affordable and Clean Energy), SDG 11 (Sustainable Cities and Communities), and SDG 13 (Climate Action).

SUSTAINABLE GALS DEVELOPMENT

CONCLUSION

This study shows that Gutka tiles (Multani Tiles) and Weather paints help us to make buildings comfortable and eco-friendly but both work in different ways. The simulation model's analysis shows that Gutka tiles reduce energy consumption, whereas the weather paints reduce the carbon emissions rate. Therefore, selection depends upon what is important: For keeping buildings or housing naturally cooled, Gutka tiles are best choice. For cost effective, lighter and eco-friendly buildings, Weather paint is best. Using both strategies together makes the house more comfortable and sustainable in hot climate regions.

REFERENCES

- 1. Pirvaram, A.; et al. Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods. Renew. Sustain. Energy Rev. 2022, 162, 112451. https://doi.org/10.1016/j.rser.2022.112451
- 2. Prakash Bijarniya, J.; et al. Performance improvement of CO₂ air conditioner by integrating photonic radiative cooler as sub-cooler or/and roof envelope. Energy Convers. Manag. 2022, 266, 115824. https://doi.org/10.1016/j.enconman.2022.115824
- Qin, M.; et al. Phase-change materials reinforced intelligent paint for efficient daytime radiative cooling. iScience 2022, 25(6), 104406. https://doi.org/10.1016/j.isci.2022.104406
 Peoples, J.; et al. Energy savings of radiative cooling paints applied to residential buildings.
 Int. J. Heat Mass Transf. 2022, 185, 122293.
- https://doi.org/10.1016/j.ijheatmasstransfer.2021.122293
 5. Ju, H.; et al. Daytime radiative cooling performance and building energy consumption simulation of superhydrophobic coatings. Energy Build. 2023, 285, 112875.
- https://doi.org/10.1016/j.enbuild.2023.112875 6. Li, H.; et al. Cooling benefit of implementing radiative cooling on a city-scale. Renew.
- Energy 2023, 205, 188–199. https://doi.org/10.1016/j.renene.2023.01.083
 7. Lu, M.; et al. Quantifying cooling benefits of cool roofs and walls applied in building clusters by scaled outdoor experiments. Sustain. Cities Soc. 2023, 97, 104675. https://doi.org/10.1016/j.scs.2023.104675
- Chen, J.; et al. Techno-economic and environmental evaluation on radiative sky cooling-based novel passive envelope strategies to achieve building sustainability and carbon neutrality. Appl. Energy 2023, 334, 120669. https://doi.org/10.1016/j.apenergy.2023.120669
 Tang, Y.; et al. Building envelopes with radiative cooling materials: A model for indoor thermal environment assessment based on climate adaptation. J. Build. Eng. 2023, 75, 106931. https://doi.org/10.1016/j.jobe.2023.106931
- 10. Cheng, Y.; et al. Experimental analysis of building envelope integrating phase change material and cool paint under a real environment. J. Clean. Prod. 2024, 426, 138889. https://doi.org/10.1016/j.jclepro.2023.138889
- https://doi.org/10.1016/j.jclepro.2023.138889

 11. Hu, M.; et al. Performance evaluation of a passive air conditioning module integrating radiative sky cooling and indirect evaporative cooling. Appl. Therm. Eng. 2024, 235, 121713.
- https://doi.org/10.1016/j.applthermaleng.2023.121713

 12. Nie, X.; et al. Energy and cost savings of cool coatings for multifamily buildings in U.S. climate zones. Adv. Appl. Energy 2024, 13, 100136.
- https://doi.org/10.1016/j.adapen.2023.100136

 13. Sun, Q.; et al. Bioinspired all-day adaptive radiative cooler with high-power cooling. Build. Environ. 2024, 245, 110973. https://doi.org/10.1016/j.buildenv.2023.110973
- Environ. 2024, 245, 1109/3. https://doi.org/10.1016/j.buildenv.2023.1109/3
 14. Tian, D.; et al. The advancement of research in cool roof: Super cool roof, temperature-adaptive roof and crucial issues of application in cities. Energy Build. 2023, 284, 112849. https://doi.org/10.1016/j.enbuild.2023.112849
- 15. Tian, L.; et al. Effect of thermal resistance and infrared transparency on radiative cooling efficiency. Energy Build. 2024, 295, 113444. https://doi.org/10.1016/j.enbuild.2023.113444