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With hydrogen as a clean but hazardous energy carrier, solid-state hydrogen storage in the form of a 
metal hydride has come forth as a safe and low-pressure storage solution with competitive 
volumetric energy density. In this technology, hydrogen is stored in a hydride-forming metal, in this 
study specifically AB5-type metal hydride, through exothermic absorption, which can then be 
discharged through endothermic desorption. This results in a complex batch system where hydrogen 
discharge is caused by high-temperature fluid heating the reactor and, by extension, the metal 
hydride bed. This, in turn, increases the hydrogen pressure of the gas surrounding the metal hydride 
bed, which is then released through a regulator to achieve the desired pressure of the discharge 
hydrogen. This discharge dynamic system, as a result, is notoriously hard to model and predict. 

In general, hydride-forming metal reactors are modelled using lumped parameter models. In this 
approach, mass conservation, energy conservation and reaction kinetics are of great importance. 
Regarding the reaction kinetics, the sorption-chemical reaction isotherms play an important role. 
Thus, an isotherm model to represent accurate isotherm data is also key. 

For the proposed modelling approach, certain simplifications are introduced, including the 
assumption that the gas acts as an ideal gas, local thermal equilibrium, and adiabatic conditions. 
Further simplifications can be made, such as constant thermal and physical properties. For this 
purpose, the finite element method allows these models to be adapted easily to different reactor 
geometries with accurate results.

Artificial neural networks have been utilised for optimisation, tracking and modelling purposes. More 
specifically, digital twins are a transformative technology which allows for the accurate prediction 
and diagnosis of systems. Furthermore, digital twins can be used to enhance the design process as 
well as increase the lifespan of systems, specifically in the case of energy storage applications

Experimental equipment to validate this study was supplied by HySA-Systems under the umbrella of 
the University of the Western Cape. Figure 1 represents a schematic diagram of the experimental 
setup filled with LaNi4.9Sn0.1 hydride-forming metal. This unit is an industrial unit, used to compress 
hydrogen, installed at a mine in the Northwest. Thus, tests were then performed at normal 
operational conditions so as not to disrupt the operation of the mine. For the discharging validation 
data, the desired gas pressure delivered by the unit was set at around 16 bar on the regulator, and to 
achieve that, steam of 135 °C to 145 °C was used.

Figure 3 shows the final mean squared error 
of the nine different neural network 
architectures when evaluated on the 
experimental data regarding the discharge 
state. This is a fully connected neural network 
with one to three hidden layers and 5, 10, or 
20 neurons on each hidden layer. While the 
mean squared error of all nine neural network 
architectures lies in the same range, the 
lowest observed mean squared error 
architecture with the least level of complexity 
is the two-layer architecture, with ten hidden 
neurons on each hidden layer. It should, 
however, be noted that the single-layer 
architecture is a contender as well, only being 
beaten by the two-layer architecture at five, 
then outperforming the two-layer 
architecture at ten and twenty neurons on 
each hidden layer.

Figure 4 represents the R-squared 
performance of the nine neural network 
architectures when tested on the 
experimental data regarding the discharge 
state. This R-squared is observed during the 
linear regression of model-predicted values 
and the experimentally observed values. 
During this application, this may be referred 
to as the adjusted R-squared statistic, as it 
does not measure the fit of the model on the 
dynamic data but only considers the predicted 
and observed data. This R-squared statistic 
measures how closely the model-predicted 
and experimentally observed data reflect each 
other; thus, a value closer to one is desired. It 
can be observed that the three-layer 
architecture with twenty neurons on each 
hidden layer has overfitted, performing much 
worse than the other architectures in this 
analysis. The rest of the architectures 
performed equally in this analysis.

Figure 5 represents the linear regression of 
the model-predicted values against the 
experimentally observed data. Specifically, for 
the two hidden layers, ten neurons on each 
hidden layer neural network architecture, 
which was determined to be the best 
performing neural network architecture for 
desorption. The R-squared in this instance 
was determined to be 0.99039.

The best-performing artificial neural network model achieved a regression coefficient of 0.9999 and 
a mean squared error of less than 10-5 during training. Likewise, the best-performing neural network 
model validation using the experimentally observed data achieved a regression coefficient of 0.99 
and a mean squared error of less than 10-4. This proves that neural networks can model the 
complexity of metal hydride reactors during discharge, specifically the HySA-systems Metal Hydride 
reactor prototype.
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Figure 2: Computational fluid dynamics validation with time versus concentration and temperature 
with (A) discharge gas pressure at 16.4 bar with heating fluid at 135 °C and (B) discharge gas pressure 

at 16 bar with heating fluid at 142 °C

Figure 1: Schematic diagram of a hydride-based 
hydrogen compressor 

For the finite element model, COMSOL 
Multiphysics was used with an ideal gas 
assumption. Considering the bed expansion, 
the assumption was made that 25% 
volumetric expansion is linearly proportional 
to concentration. Finally, gas in bed transport 
was considered to follow Darcy’s law and a 
porous heat transfer model was used. Figure 2 
shows the performance of the model.

This model was then used to generate training data by varying the operational input parameters and 
measuring the dynamic output. This data was then used to train an artificial neural network using 
the desired gas pressure, heating fluid temperature, and time as inputs and concentration as the 
variable the neural network would predict. These neural networks would vary in layer count and 
hidden neuron count using a ReLU activation and the Levenberg-Marquardt training algorithm. For 
this, both MathWorks MATLAB and TensorFlow were used with a 70-15-15 Training-Testing-
Validation split. 

The trained models would then be re-validated against the experimental data, and performance 
would be analysed in terms of R-squared and mean-squared-error, which can be considered 
measures of precision and accuracy of the model. Using simulated data to train the neural networks 
bypassed the need for extensive and expensive experimental trials.

Figure 3: Mean-squared-error performance of the 
different neural network architectures when tested 

on the experimental data
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Figure 4: R-squared performance of the different 
neural network architectures when tested on the 

experimental data

Figure 5: Regression of the two-layer, 10-neurons on 
each hidden-layer network architecture model 

predictions against experimental data

The two distinct curves that formed seem to be 
the two different experimental trials, having 
differing degrees of accuracy for the whole of 
the dataset. While within the bounds of 
accuracy, this indicates the model is not perfect. 
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