The 3rd International Online Conference on Agriculture

22-24 October 2025 | Online

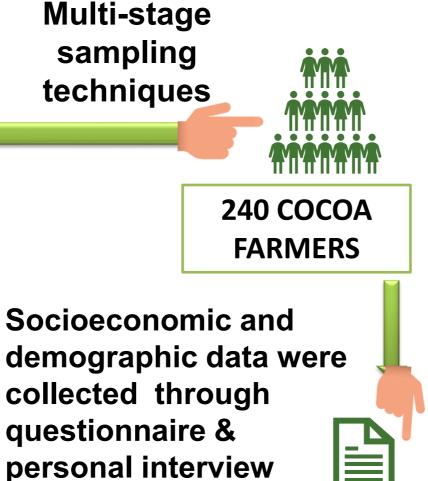
Causal Impact of Approved Pesticide Use on Cocoa Farmers' Welfare in Nigeria

Lawrence Oluwagbenga Oyenpemi^{1,2,&3}

¹Middle Tennessee State University, Murfreesboro, TN 37132, USA, ²Obafemi Awolowo University, Ile-Ife, Nigeria, ³Political Economy Research Institute, MTSU

INTRODUCTION

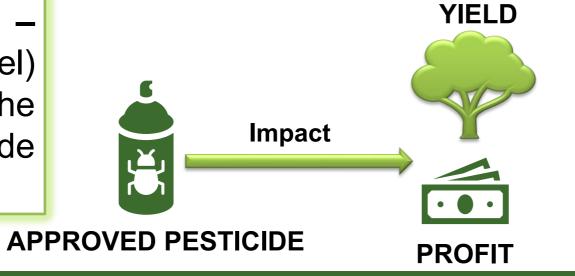
- The cocoa industry plays a vital role in rural livelihoods and Nigeria's national economy (Oyenpemi et al., 2023).
- However, the sector faces persistent challenges notably pests and diseases that threaten yields and quality.
- Many farmers respond by overusing pesticides, leading to:
 - Poor cocoa quality due to excessive chemical residues (Faloni et al., 2022).
 - Cocoa beans exceeding international Maximum Residue Limits (MRLs).
 - Resulting in price penalties and rejection in export markets.
- To mitigate these issues, the Federal Government of Nigeria, through CRIN and NAFDAC, has:
 - Reviewed and recommended a list of approved pesticides compliant with European Union MRL regulations.
- Despite these efforts, adoption of approved pesticides remains low, limiting improvements in cocoa quality, farmer welfare, and sustainability of production systems.


AIMS/OBJECTIVES

- To predict factors influencing the use of approved pesticides among cocoa farmers.
- To estimate the causal impact of using approved pesticides on farmers' welfare (profit, and productivity).

METHODS

- Study conducted in Osun State, Nigeria, Africa.
- 4 LGAs were selected based on their high level of cocoa production.


Analytical Techniques

• **Descriptive Statistics** – to summarize socioeconomic characteristics and pesticide use patterns.

- **Supervised Machine Learning Model -** to predict factors influencing the adoption of approved pesticides.
- Causal Inference Methods –
 Causal Forest (main model)
 was used to estimate the
 impact of approved pesticide
 use on profit and output.

RESULTS & DISCUSSION

	dda Dation	ficients and O	araasian Caaf	La miatia Da
Drivers of App	Logistic Regression Coefficients and Odds Ratios			
Ado	Odds Ratio	Coefficient	Feature	
 Awareness 	1.554000	0.441200	Awareness	Awareness
farm inco	1.389000	0.328500	offfarm	offfarm
marital sta	1.279000	0.245800	Married	Married
and educ	1.110000	0.104000	Education	Education
that inform	1.088000	0.084100	farmsize	farmsize
farmers be	1.036000	0.035000	Age	Age
and follo	1.000000	-0.000000	offincome	offincome
pesticide pr	0.984000	-0.015800	Experience	Experience
Credit	0.931000	-0.071600	Hhsize	Hhsize
extension adoption,	0.903000	-0.101600	Sex	Sex
inefficiencie	0.849000	-0.163700	Association	Association
in support d	0.753000	-0.283300	Extension	Extension
	0.588000	-0.531800	credit	credit
		old size	esents Househo	Note: Hhsize repr

Orivers of Approved Pesticide Adoption

- Awareness (+55.4%), offfarm income (+38.9%), marital stability (+27.9%), and education (+11.0%) increase adoption, showing that informed and stable farmers better understand and follow approved pesticide practices.
- Credit (-41%) and extension (-25%) reduce adoption, suggesting inefficiencies or mismatches in support delivery.

Causal Inference Results

Method	Estimated Effect (Profit)	Estimated Effect (Output)
PSM	0.657	0.535
IPW	24.583	16.981
Casual Forest	0.449	0.416

Note: PSM - Propensity Score Matching, IPW - Inverse Probability Weighting

- Causal Forest estimate: Use of approved pesticides led to a 44.9% increase in profit and a 41.6% increase in output among farmers.
- SHAP analysis: Treatment effects were heterogeneous, showing that farmers who were more experienced, association members, with larger farms and higher awareness benefited more from approved pesticides.

CONCLUSION

- Awareness, education, and income stability are key drivers of adoption, emphasizing the need for more effective and farmerfocused extension and credit initiatives.
- Adoption of approved pesticides significantly boosts productivity and profitability, particularly among informed and experienced farmers, highlighting the importance of knowledge-centered agricultural policies.

FUTURE WORK / REFERENCES

 Measure how high Maximum Residue Limits (MRLs) affect cocoa export volumes and market access.

Oyenpemi, L.O., Tijani, A.A., and Kehinde, A.D. (2023). What determines a sustained use of approved pesticides for cleaner production and its impact on yield? Evidence from the cocoa industry in Osun State, Nigeria. *Cleaner and Responsible Consumption*, 9(1), pp. 100-113. doi:10.1016/j.clrc.2023.100113.

Faloni, K.B., Tijani, A.A., and Kehinde, A.D. (2022). Economic impact of cocoa farmers' compliance to EU pesticide regulations in Osun State, Nigeria. *Agriculturae Conspectus Scientificus*, 87(2), pp.165-180.