

Effects of Nitrogen Fertilization and Irrigation Regimes on Biodiesel Quality and Emission Performance of Winter Rapeseed (*Brassica napus L*.)

Lucian Dordai, Marius Roman, Anca Becze
INCDO-INOE2000, Research Institute for Analytical Instrumentation, ICIA Cluj-Napoca Subsidiary,
400293 Cluj-Napoca, Romania
lucian.dordai@icia.ro

INTRODUCTION & AIM

Biodiesel represents a promising eco-friendly alternative to petroleum diesel, offering reduced greenhouse gas emissions and enhanced biodegradability. Optimizing agricultural practices for feedstock production is critical to ensure high-quality biodiesel with minimal environmental impact. In this context, winter rapeseed (*Brassica napus L.*) is a key feedstock crop, whose oil yield and chemical composition—and consequently the quality of the derived biodiesel and its emission profile—are significantly influenced by nitrogen fertilization and water availability.

Research Aim:

To evaluate the effects of nitrogen fertilization and irrigation regimes on fuel properties and engine emissions of biodiesel produced from winter rapeseed (cv. Dexter).

Keywords: biodiesel, rapeseed, nitrogen fertilization, irrigation, emissions, zero-pollution solutions

METHOD

Location: Aiton, Cluj County, Romania (46°35'N, 23°47'E, 345-493 m elevation)

Year: 2023-2024

Cultivar: Dexter (winter variety)

Plot size: 10 m² (2×5 m), spaced 3 m apart

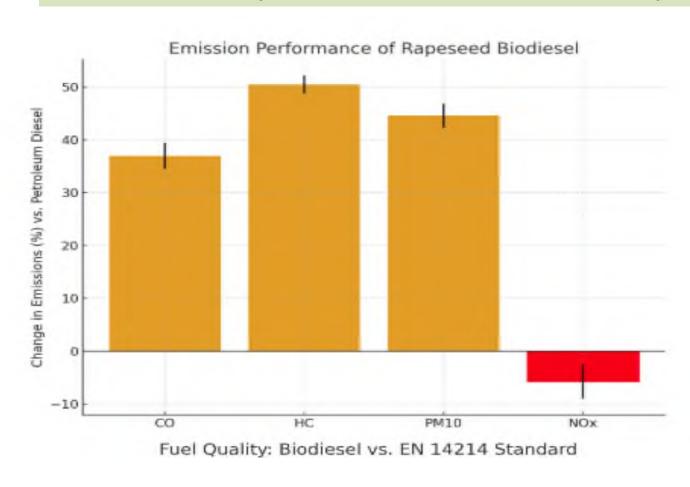
Factor	Treatments
Factor A: Irrigation	I _o : Non-irrigated I ₁ : 50% IUA (1100 m³/ha)
Factor B: Fertilization	N0: 0 kg N/ha N100: 100 kg N + 75 kg P + 20 kg S N150: 150 kg N + 75 kg P + 20 kg S N270: 270 kg N + 75 kg P + 20 kg S

Irrigation schedule: Autumn (300 m³/ha), Spring (400 m³/ha), Summer (500 m³/ha)

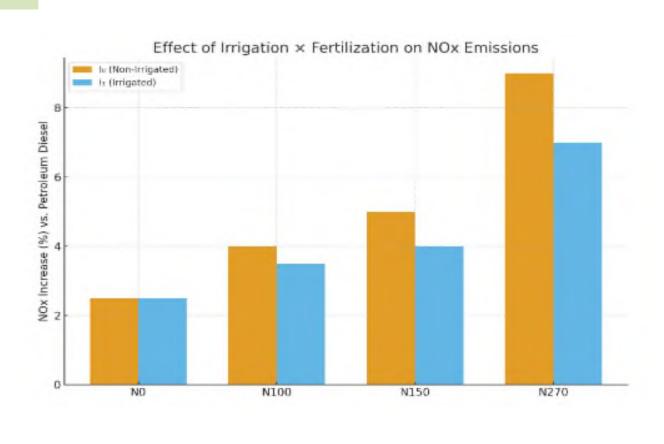
N application: 25% autumn, 60% spring, 15% after flowering

Biodiesel production: Methanol transesterification

Analysis: Cetane number, sulfur content, calorific value (EN 14214); Emissions:


CO, HC, PM₁₀, NO_x

RESULTS & DISCUSSION


Biodiesel Quality: All biodiesel samples met EN 14214 standards for cetane number, sulfur content, and calorific value, confirming excellent fuel properties.

Optimal Treatment: I₁ × N150

This combination produced biodiesel with the best quality characteristics and emissions performance.

•CO emissions: Reduced by 34.5–39.5% compared to petroleum diesel

•HC emissions: Reduced by 48.8–52.2%

•PM₁₀ emissions: Reduced by 42.3–46.9%

•NO_x emissions: Slight increase of 2.5–9% (linked to oxygen content and viscosity)

•Irrigation effect: Irrigated variants (I₁) consistently showed better biodiesel properties and lower emissions

•High N rate: N270 treatment increased NO_x emissions—over-fertilization should be avoided

CONCLUSION

- •Rapeseed biodiesel is a viable renewable fuel with **favorable environmental characteristics**, meeting EN 14214 standards
- •Significant reductions in CO, HC, and PM₁₀ emissions contribute to zero-pollution practices
- •The $I_1 \times N150$ treatment emerged as optimal for biodiesel quality and emissions
- •Proper nitrogen management is crucial: excessive N (270 kg/ha) increases NO_x emissions
- •Irrigation at 50% IUA consistently improved both fuel properties and emissions profile
- Feedstock properties directly influence biodiesel characteristics through oxygen content and viscosity

FUTURE WORK

- •Investigate strategies to mitigate NO_x emissions while maintaining optimal fuel performance
- •Explore **advanced engine technologies** and exhaust after-treatment systems
- •Evaluate **different rapeseed varieties** under varying agro-climatic conditions
- •Conduct long-term field trials for sustainability assessment
- •Study the carbon footprint and life cycle analysis of biodiesel production

REFERENCES

ACKNOWLEDGMENT

This work was carried out through the Core Program within the National Research Development and Innovation Plan 2022-2027, carried out with the support of MCID, project no. PN 23 05.

[1] Aoun, Wassim Ben, et al. "Recommended fertilization practices improve the environmental performance of biodiesel from winter oilseed rape in France." *Journal of Cleaner Production* 139 (2016): 242-249.

[2] Khodabin, Ghorban, et al. "Evaluation of nitrate leaching, fatty acids, physiological traits and yield of rapeseed (Brassica napus) in response to tillage, irrigation and fertilizer management." *Plant and Soil* 473.1 (2022): 423-440.