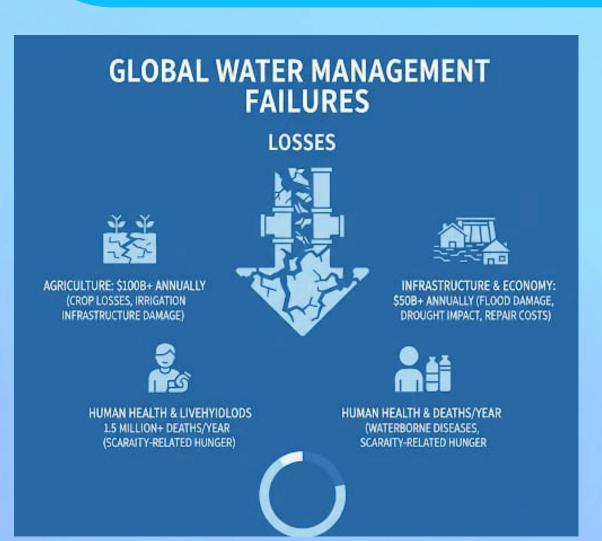
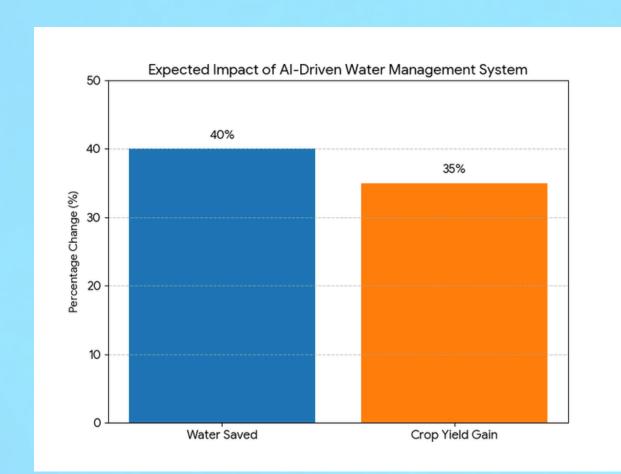
From Water to Wealth: Transforming Underdeveloped Nations through Agricultural Water Management

Ali Raihan Sapno ,MD. Tashfiqur Rahman Mazumder ,Fahima Ahmed Shifa Civil Engineering Department, East West University, Dhaka 1212, Bangladesh Contact: 2024-3-22-068@std.ewubd.edu

Introduction

Agriculture relies on effective water management, yet uneven distribution, climate change, and conflicts limit access in many regions. These challenges reduce productivity and fuel disputes, making fair water governance a matter of both development and sovereignty. In today's AI era, smart water management is vital for sustainable growth and national resilience and economic sustainibility


Method


- Custom AI models analyze historic and real-time water data.
- Economic models assess links between water efficiency and income.
- Surveys and interviews capture local farming and irrigation practices.
- Integrated approach blends data science with community insights.

The experimental configuration of the proposed irrigation scheduling system.

Expected Results

- Water wastage ↓ up to 40 %, crop yield ↑ 25–35 %.
- Stronger water governance reduces conflicts & strengthens community trust.
- Improved farm income → higher education & health investment.
- Broader impact: boosts national GDP and GNI in underdeveloped economies.

Water saved vs. Crop yield gain

water management and economic model

Conclusion

- Intelligent, participatory water management can transform economies.
- Al and civil engineering tools ensure long-term sustainability.
- Framework supports hydro-justice, equity, and resilience.
- Water is not just a resource it's the foundation of national progress.

Reference

- MDPI. (2024). Multi-Dimensional Collaborative Optimization Model for Agricultural Water Rights Allocation. Water, 16(9), 1262. https://doi.org/10.3390/w16091262
- PMC. (2024). Water–Agriculture–Socio-Economic System Dynamics Approach for Sustainable Resource Management. Environmental Modelling & Software. https://pmc.ncbi.nlm.nih.gov/articles/PMC11836191
- Iconscout. (2024). Sustainable Water Management Illustration Pack (Vector Graphics). https://iconscout.com/illustrations/sustainable-water-management
- FAO. (2023). Artificial Intelligence in Agricultural Water Management: Challenges and Opportunities. Food and Agriculture Organization of the United Nations.
- OpenAI. (2025). ChatGPT (GPT-5 Mini)
- Google DeepMind. (2025). Gemini Al Models. Retrieved from https://www.deepmind.com/gemini