

The 3rd International Online Conference on Agriculture

22-24 October 2025 | Online

EFFECT OF MODE OF VITAMIN E SUPPLEMENTATION ON ADAPTABILITY AND STRESS BIOMARKERS ON UDA RAMS IN SEMI-ARID REGION

Abdulazeez Abdullahi Adeoye, K.M. Aljameel.

Department of Animal Science, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria

INTRODUCTION & AIM

The livestock sector is vital to Nigeria's agriculture and rural economy but remains underproductive, contributing only 1.7% to GDP and 9% to agricultural value added. Sheep production, mainly by smallholders and nomads, provides meat, income, and livelihood security for rural households (Statista, 2022; NRC, 1985).

However, productivity is constrained by nutritional and environmental stressors, which impair growth, immunity, and adaptability (Umar, 2013).

Vitamin E, a natural antioxidant (α -tocopherol), protects body cells from oxidative stress and improves animal health and resistance (Huber, 1988; Golub & Gershwin, 1985).

The study was conducted to assess the effect of vitamin E supplementation on the adaptability and stress biomarkers of Uda rams raised under semi-arid conditions.

METHOD

- The study was conducted at the Livestock Farm, UDUS Sokoto (Sudan Savanna; rainfall ≈500 mm; temp. 12-41 °C).
- \gg A CRD with 3 treatments and 4 reps: T_1 - Control, T_2 - 40 g/kg Vit E (feed), T_3 - 40 g/L Vit E (water). Trial lasted 7 weeks.
- Nine Uda rams (18-23 kg) were quarantined, dewormed, and fed a basal diet (ME 2509 kcal/kg; CP 17%).
- Data: cortisol, prolactin, T₃, T₄, TAC, SOD, GPx, pulse, respiration, rectal temp.
 Analysis: ANOVA (LSD, p < 0.05).</p>

RESULT & DISCUSSION

Stress Biomarkers and Antioxidant Activity

Tabl1: The table below presents the measured parameters and the effects of vitamin E supplementation administered through water and feed in comparison with the control group.

Parameter	Control	Vit E Feed	Vit E Water	Effect
Cortisol (ng/ml)	55.3	45.3	52.7	↓ stress
MDA (nmol/ml)	2.86	1.88	1.89	oxidative stress
Resp. Rate (bpm)	42.7	26.0	31.2.	stress
SOD (U/ml)	0.68	0.82	0.78	↑ antioxidant
Rect Temp (°C)	39.6	39.3	39.0	NS

Values are mean plus /standard error values in row significantly different at (p 0.05) Level

Cortisol, T₄, and MDA were significantly reduced (p < 0.05) in vitamin E-treated rams compared to control, indicating lower stress and oxidative damage.

Prolactin, T_3 , TAC, and SOD showed no significant differences (p > 0.05). The reduction in T_4 and MDA suggests vitamin E alleviated stress-related thyroid activity and lipid peroxidation, supporting its antioxidative role (Awadeh et al., 1998; Flohé, 2007).

Adaptability Parameters

Vitamin E reduced respiratory rate significantly (p < 0.05) compared to control, indicating improved heat tolerance

CONCLUSION

Vitamin E—especially through feed—reduced stress markers (cortisol, MDA) and improved antioxidant activity (SOD) in Uda rams.

Minimal effects were seen on $T_3,\,T_4,\,$ and prolactin.

Feed supplementation enhanced adaptability and stress tolerance better than water.

Overall, vitamin E supports improved resilience in livestock.

REFERENCES

Caroprese, M., Albenzio, M., Bruno, A., Annicchiarico, G., Marino, R., & Sevi, A. (2012). Effects of shade and flaxseed supplementation on welfare of lactating ewes under heat stress. Small Ruminant Research, 102(2-3), 177-185.

Finch, J. M., & Turner, R. J. (1996). Effects of selenium and vitamin E on immune responses of domestic animals. Research in Veterinary Science, 60(2), 97-106.

Hristov, S., Maksimović, N., Stanković, B., Žujović, M., Pantelić, V., & Zlatanović, Z. (2012). Significant stressors in intensive sheep production. Biotechnology in Animal Husbandry, 28(4), 649-658. Marai, I. F. M., Darawany, A. A. E., Fadiel, A. M., & Abdel-Hafez, M. A. M. (2008). Reproductive performance traits as affected by heat stress and its alleviation in sheep. Tropical and Subtropical Agroecosystems, 9(3), 209-234.

Sejian, V., Maurya, V. P., & Naqvi, S. M. K. (2011). Effect of combined stresses (thermal and nutritional) on growth and reproductive performance of Malpura ewes under semi-arid tropics. Journal of Animal Physiology and Animal Nutrition, 95(2), 252-258.