The 3rd International Online Conference on Agriculture

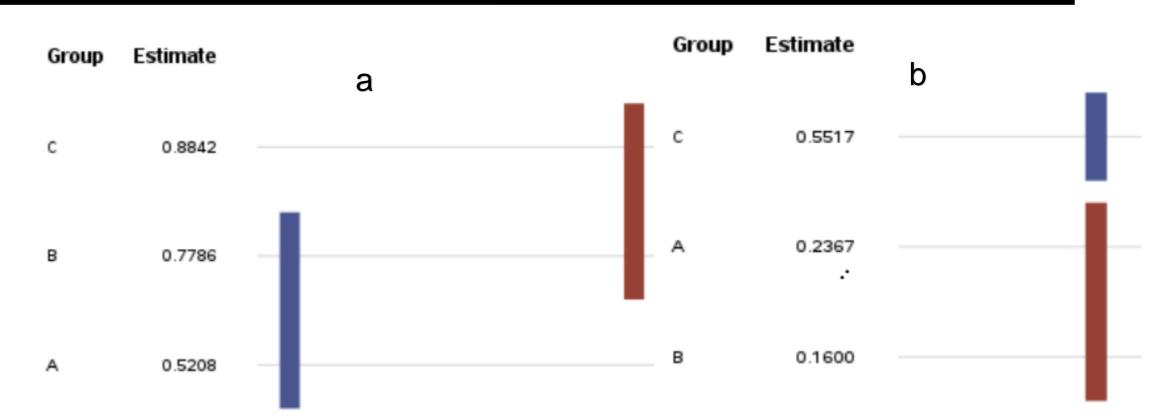
22-24 October 2025 | Online

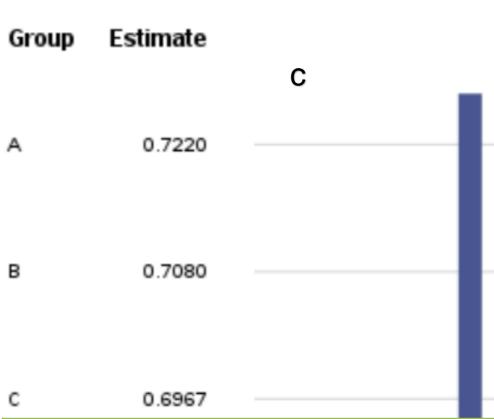
Immunotherapeutic potentials of immunogenic peptides for sustainable livestock production

Isaac Oluseun Adejumo¹, A.O. Akintayo²

¹Department of Animal Science, University of Ibadan, Ibadan, Nigeria ²Department of Aquaculture and Fisheries Management, University of Ibadan, Ibadan, Nigeria

INTRODUCTION & AIM


- High cost of feed ingredients and growing concerns about antibiotic resistance limit sustainable animal food production.
- > Significant research and investment strive to identify sustainable and cost-effective alternatives to feed ingredients and antibiotics.
- ➤ Probiotics have emerged as promising candidates, but their widespread application is limited by an incomplete understanding of their functional mechanisms.
- This study aimed to investigate unexplored properties of immunogenic peptides from *Ligilactobacillus saerimneri*, *Ligilactobacillus salivarius* and *Lactobacillus acidophilus*.


METHOD

- Immunogenic peptides were derived from Ligilactobacillus saerimneri, Ligilactobacillus salivarius and Lactobacillus acidophilus.
- Ligilactobacillus saerimneri was isolated from the cecum of a 20-day-old chicken. Ligilactobacillus salivarius was isolated from the feces of swine.
- They were assessed for their ability to induce interleukin-10 (IL-10), interleukin-13 (IL-13) and interferon-gamma (IFN_γ) using computational approach.
- > Six peptides each were considered from each organism.
- Their physicochemical properties were also assessed.
- Statistical analysis was done using one-way analysis of variance using SAS v.94.
- Duncan's Multiple Range Test was used for post hoc mean separation.
- Significance level was established at 0.05

RESULTS & DISCUSSION

- L. acidophilus-derived peptides obtained significantly (p<0.05) higher IL-10-inducing and IL-13-inducing capacity.
- > IFN y was not statistically different.
- > The theoretical isoelectric point indicated the peptides' potential to be well-accommodated in the gastrointestinal tracts.
- The peptides can withstand a varied temperature range, the aliphatic index being generally high.
- > 22% of the peptides, based on their GRAVY scores, are hydrophobic, while the rest are hydrophilic.

Fig. 1. Duncan grouping for means of group: a) IL-10-inducing potential; b) IL-13 and c) IFN_ γ mouse); A = Ligilactobacillus salivarius; B = Ligilactobacillus saerimneri; C = Lactobacillus acidophilus; Means within the same bars (colours) are not significantly (p<0.05 different.

Table 1. Physicochemical properties of immunogenic peptides										
ID	#AA	pl	MW	#-ve	#+ve	Chemical formula	EF	II	AA	GRAVY
L. sal1	20	4.87	2257.53	4	3	C98H161N29O32	*	55.05	97.50	-0.455
L. sal2	20	4.18	2450.80	5	2	$C_{110}H_{168}N_{24}O_{35}S_2$	*	28.55	63.50	-0.380
L. sal3	20	9.70	2175.47	1	3	$C_{94}H_{159}N_{29}O_{30}$	1490**	-3.73	97.50	-0.205
L. sal4	20	9.53	2478.98	1	3	$C_{116}H_{184}N_{30}O_{28}S_1$	2980**	24.69	131.50	0.160
L. sal5	20	9.99	2125.46	0	2	$C_{94}H_{157}N_{29}O_{27}$	1490**	19.71	117.00	0.090
L. sal6	20	4.00	2301.53	7	2	$C_{98}H_{165}N_{25}O_{38}$	*	37.71	122.00	-0.645
L. saeri1	20	12.01	2277.62	1	7	$C_{94}H_{16}9N_{39}O_{27}$	*	107.8 1	58.50	-1.655
L. saeri2	20	4.30	2510.61	6	3	$C_{113}H_{152}N_{28}O_{38}$	8480	27.39	0.00	-2.065
L. saeri3	20	5.02	2490.84	5	3	$C_{116}H_{176}N_{28}O_{33}$	6990	67.14	97.50	-0.510
L. saeri4	20	4.75	2142.31	4	2	$C_{92}H_{144}N_{26}O_{33}$	1490**	61.77	73.00	-0.695
L. saeri5	20	8.90	2217.64	0	1	$C_{108}H_{165}N_{23}O_{27}$	4470**	4.39	136.50	1.110
L. saeri6	20	6.74	2139.54	1	1	$C_{94}H_{163}N_{25}O_{29}S_1$	*	17.09	146.00	0.750
L. acid1	18	5.79	2175.53	3	3	$C_{99}H_{155}N_{25}O_{28}S_1$	2980**	-22.97	102.78	-0.150
L. acid2	18	6.03	2147.48	3	3	$C_{97}H_{151}N_{25}O_{28}S_1$	2980**	-22.97	102.78	-0.117
L. acid3	18	4.58	2159.43	4	3	$C_{98}H_{151}N_{25}O_{30}$	2980**	-27.68	102.78	-0.450
L. acid4	18	4.68	2173.45	4	3	$C_{99}H_{153}N_{25}O_{30}$	2980**	-22.97	102.78	-0.450
L. acid5	18	6.04	2191.51	3	3	$C_{103}H_{155}N_{25}O_{28}$	2980**	-31.32	102.78	-0.100
L. acid6	18	6.04	2158.44	3	3	$C_{98}H_{15}2N_{26}O_{29}$	2980**	-9.81	102.78	-0.450

#-ve = Total number of negatively charged residues (Asp + Glu); #+ve = Total number of positively charged residues (Arg + Lys); *There are no Trp, Tyr or Cys in the region considered; Extinction coefficients are in units of M-1 cm-1, at 280 nm measured in water. **This protein does not contain any Trp residues. Extinction coefficients are in units of M-1 cm-1, at 280 nm measured in water.

CONCLUSION

➤ The potential sustainable applications of the peptides as therapeutic feed additives, functional food supplements and innovative candidates in vaccine development are suggested.