The 3rd International Online Conference on Agriculture

22-24 October 2025 | Online

Influence of Cow Parity on

the Precision of Near-infrared Spectroscopic Sensing System for Assessing Milk Quality During Milking

Patricia Iweka¹, Shuso Kawamura¹, Tomohiro Mitani², Takashi Kawaguchi³ ¹Graduate School of Agricultural Science, Hokkaido University, Sapporo, Japan ²Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan Orion Machinery Co. Ltd., Nagano, Japan

used as calibration and

Parity data set

validation data set and the

same condition was used for 2nd

1st vs 2nd = 1st Parity data set

data set as validation set

data set as validation set

used as calibration and

validation set

Laptop

computer

NIR

spectrum

sensor

1st & 2nd = 1st and 2nd Parity data set was combined and

as calibration set and 2nd Parity

2nd vs 1st = 2nd Parity data set

as calibration set and 1st Parity

INTRODUCTION & AIM

- □ Raw milk constituents such as milk fat, lactose and somatic cell count (SCC) are great determinant factors for milk quality **Conditions Considered** 1st/2nd = 1st Parity data set was
- □ An online real-time near-infrared (NIR) spectroscopic sensing system has been developed for milk quality assessment

However...

- □ Various cow parity have probably been one of the major hindering factors to obtaining excellent calibration performances
- □ Aim... to investigate the influence of cow parity on the precision and accuracy of calibration models

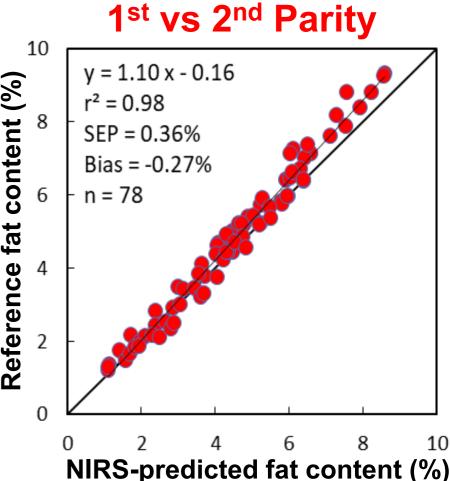
MATERIALS AND METHOD

- ☐ Cow information: Two Holstein cows in their first and second calving phase were used
- **□** Reference analyses: MikoScan and Fossomatic device
- ☐ Online NIR spectroscopic sensing system was designed & constructed
- **☐** Wavelength range: 700 to 1050 nm (1 nm intervals)

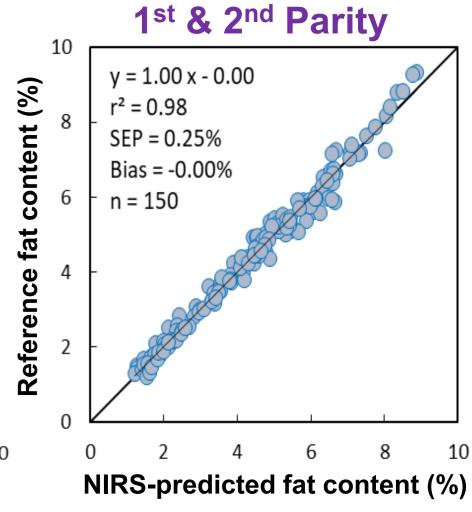
partial least squares

regression (PLSR)

Chemometric Analyses


sampler NIR spectra data Reference data ☐ Calibration set: 1st & 2nd sample data set ☐ Validation set: 1st & 2nd sample data set **Partial least squares** regression (PLSR) Cross validation method was used Develop **Calibration Model** ☐ Statistical method:

Validate the precision and accuracy


Flow chart for developing calibration model

RESULTS & DISCUSSION

1st / 2nd Parity y = 1.00 x - 0.00 $r^2 = 0.99$ SEP = 0.14%Bias = -0.00%n = 72NIRS-predicted fat content (%)

2nd vs 1st Parity y = 0.87 x + 0.51 $r^2 = 0.95$ SEP = 0.44%Bias = 0.04%n = 72NIRS-predicted fat content (%)

☐ The precision and accuracy of the calibration models of milk fat was very high and similar but different for milk lactose and SCC for 1st and 2nd cow parity

NIR validation statistics for milk quality determination using near-infrared spectroscopy

	indicators	1 st Parity	2 nd Parity	1 st vs 2 nd	2 nd vs 1 st	1st & 2nd
	Fat (%)	0.99	0.99	0.98	0.95	0.98
	Lactose (%)	0.87	0.78	0.43	0.41	0.59
	SCC (log SCC/mL)	0.90	0.87	0.71	0.52	0.79
Coefficient of Determination (r ²) values						

The NIR spectroscopic sensing system developed in this study could be used for online real-time assessment of milk constituents and SCC during milking

CONCLUSION

- ☐ The precision and accuracy of calibration model for milk fat was excellent and similar for all the five conditions
- ☐ The accuracy of calibration model for milk lactose and SCC varied for all the five conditions considered in this study. Thus;
- ☐ It was suggested that cow parity could affect the accuracy of calibration models

FUTURE WORK / ACKNOWLEDGEMENT

☐ To explore other limiting factors (cow lactation stages and feeds) ☐ To develop a model that would compensate for these factors and

improve the calibration models for each milk constituents and SCC

This research was supported by grant from the Project of NARO Bio-oriented Technology Research Advancement Institution, Japan (the project for Development of New Practical Technology). The authors thank NARO for the grant.