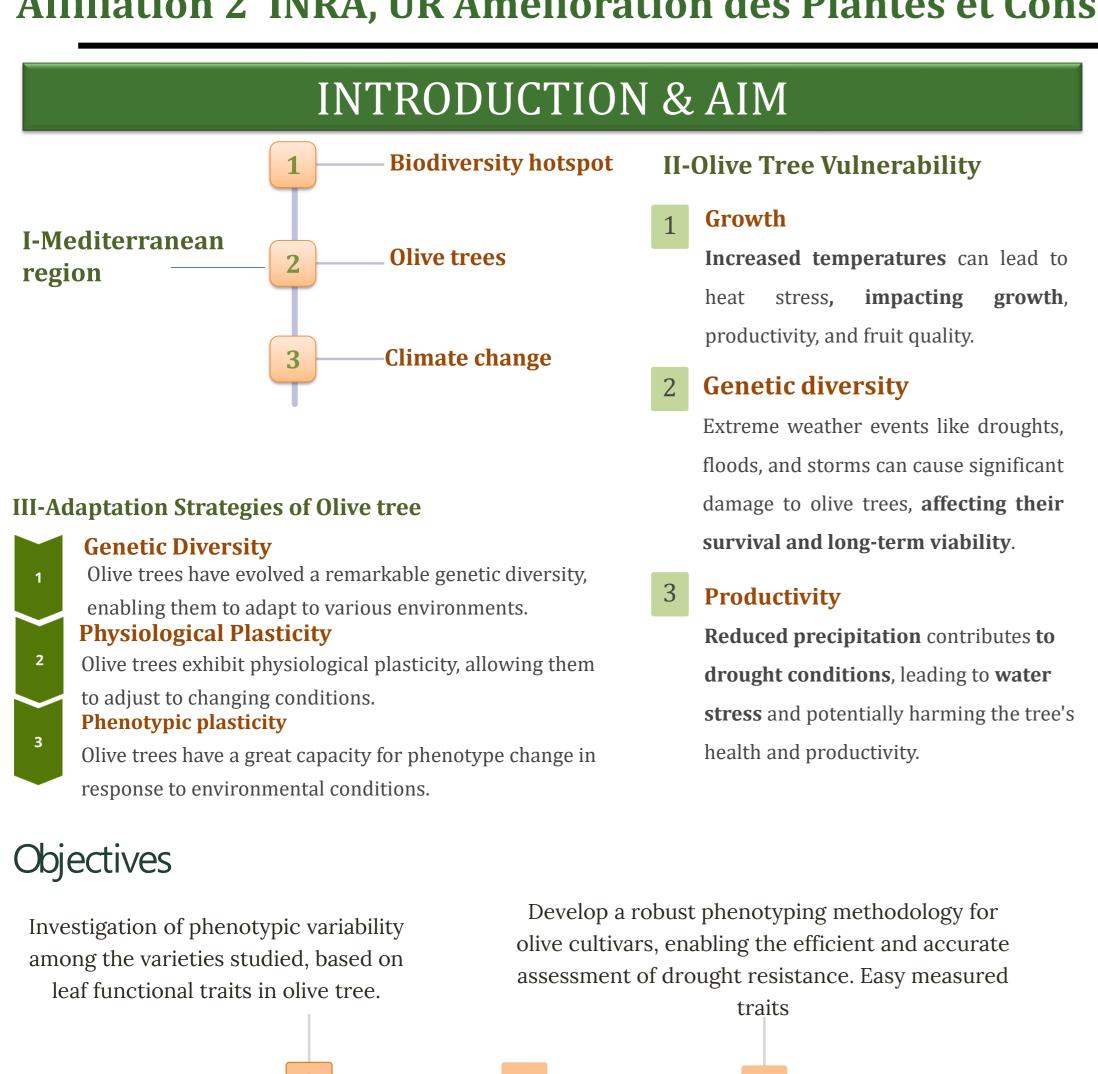
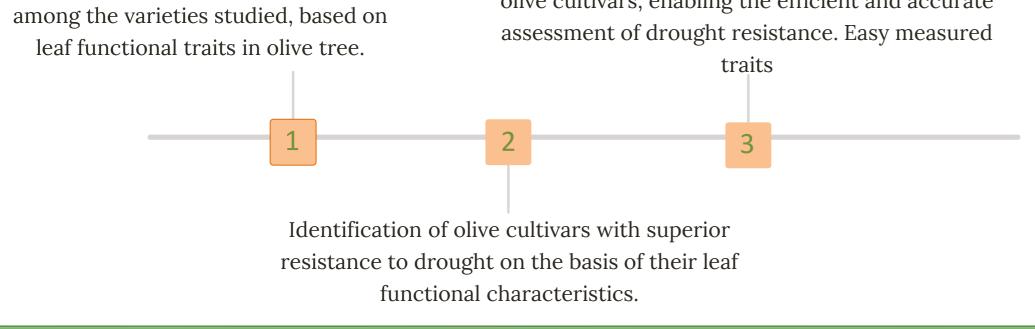
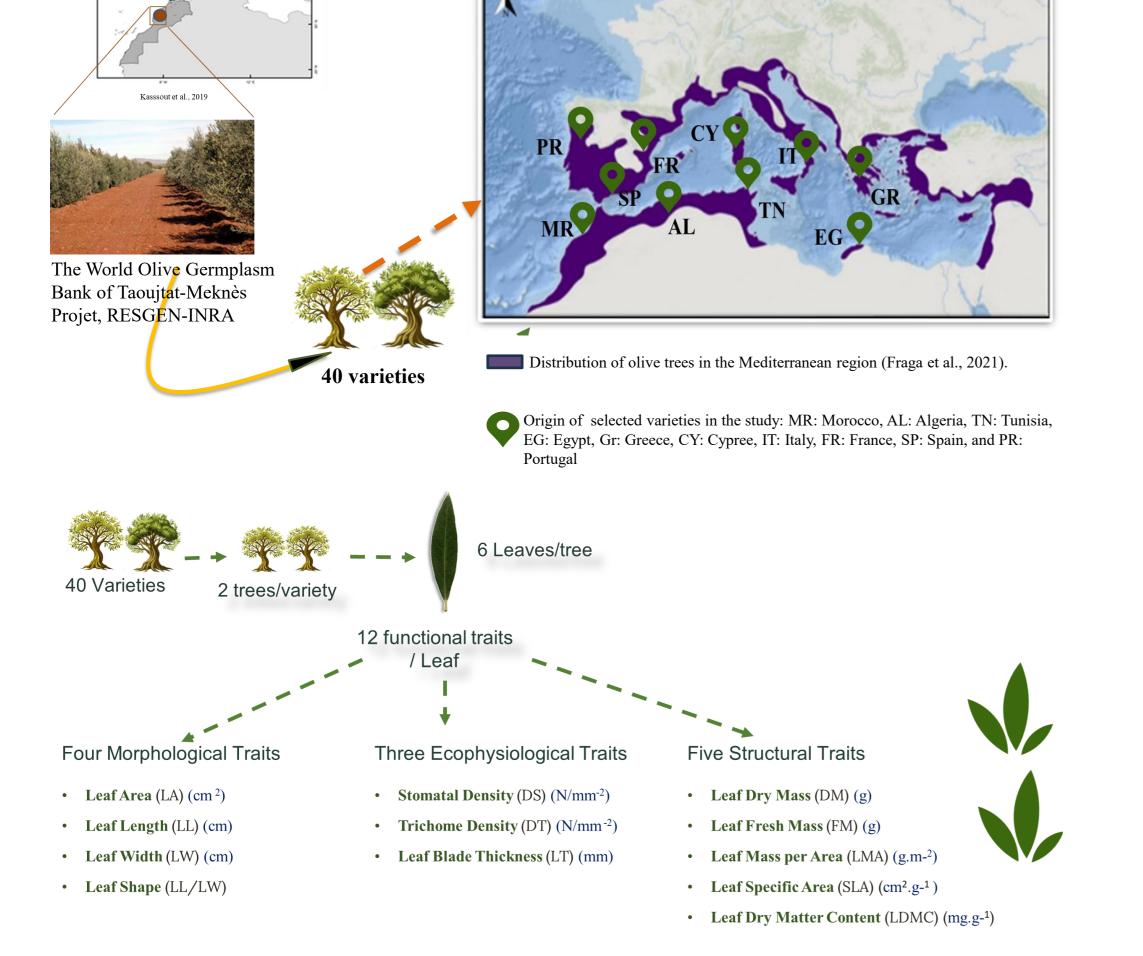
The 3rd International Online Conference on Agriculture




22-24 October 2025 | Online

Leaf Traits as Indicators of Drought Adaptation in Olive Cultivars


Abdelouahab Sahli 1, Abdelilah Meddich 1, Cherkaoui El Modafar 1, Ahmed El Bakkali 2 Affiliation 1 Universite' Cadi Ayyad, Faculté des Sciences et Techniques Gueliz, Laboratoire AgroBiotechL02B005, 40000 Marrakech

Affiliation 2 INRA, UR Amélioration des Plantes et Conservation de Ressources Phyto-génétiques, Meknès,

METHOD

			RESUL	TS &	DISC	USSION			
		Trait	Min	Max	Mea	n CV%			IOVA One way
		LA	1.63	11.52	4.83	3 25.65	5		3.61***
Mor	-Tr	LL	3.12	9.19	5.76	14.16		8	8.37***
17101		LW	0.74	2.10	1.28	17.53		1	2.44***
		LL/LW	2.46	7.89	4.58	18.38		1	4.69***
Ecop	. Tr	DS	188.45	575.65	350	.04 17.92		4	1.35***
LCOP)-11	DT	75.59	294.12	156.	03 16.14		1	.94***
		LT	0.32	0.79	0.48	3 13.17		1	1.27***
		FM	0.07	0.49	0.23	3 27.65		S).79***
Str-T	r_Tr	DM	0.04	0.24	0.12	28.47	,	1	0.54***
301-1		LMA	8.85	50.50	24.6	18.80		5	5.70***
		LDMC	295.60	965.35	509	.30 8.88		3	3.97***
		SLA	19.80	113.00	41.9	3 19.22		6	6.59***
Maximum Values					Minim	um Values			
	Traits	Origin	Variety	Mean	Traits	Origin	Varie	ety	Mean
	LA	FR	Bouteillan	6.17	LA	PR	Cobi	rancosa	4.00
[or-Tr	LL	AL	Azeradj	6.83	LL	AL	Azer	adj	6.83
	LW	GR	Pikrolia	1.92	LW	FR	Bout	eillan	1.00
	LL/LW	PR	Lentisca	6.02	LL/L	W GR	Pikro	olia	2.91
	LT	TN	Neb jmel	0.63	LT	IT	Noci	ara	0.43
:op-Tr	DT	SP	Alameno Bla	n 18 5.99	DT	GR		neiki	125.49
	DS	SP	Hojiblanca	456.18	DS	PR	Gale Vulg	ga ar	284.69
	FM	TN	Meski	0.34	FM	SP		quina	0.18
	DM	AL	Azeradj	0.17	DM	SP	Arbe	quina	0.09
r-Tr	LMA	TN	Neb jmel	30.73	LMA	AL	Lafa	chouk yette	25.59
	LDMC	EG	Baid El Hama	а Б 65.67	LDMO	C SP	Lech Sevil	ín de la	468.80
	SLA	GR	Pikrolia	48.46	SLA	TN	Neb		32.98

Traits		Meaning of the trait variation	References	Resistant varieties	Origin
LA, LW, LL/LW DM, FM		Resisting drought conditions	Ayala et al., 2020; Pérez-Harguindeguy et al. (2016)	Cobrancosa, Koroneiki, Arbequina	Portugal Greece Spain
LT ,		Severely stressed conditions	Pérez-Harguindeguy et al. (2016)	Nociara, Leccino Picholine Marocaine	Italy Morocco
DS		Water stress	Peel et al. (2017)	Galega Vulgar	Portugal
DT /	1	Reduce the rate of perspiration (sweating)	Fernández et al. (2024)	Alameno Blanco	Spain
LMA /	•	Arid climates	Salazar et al. (2021)	Neb jmel	Tunisie
LDMC	1	resistant to physical risks	Pérez-Harguindeguy et al. (2016)	Baid El Hamam	Egypte
SLA /		resistance to drought	Diaz and Cabido (1997)	Pikrolia	Portugal

CONCLUSION

Significant variation in leaf functional traits among olive cultivars. This suggests that specific traits can be used to

identify drought-

resistant varieties.

鈴

Significant intervarietal variability in leaf functional traits depending on the nature of the trait and the origin

ઈ

All the traits can be used in breeding programs to select varieties, but leaf shape, leaf width, leaf thickness, dry and fresh weight are the traits that show the most phenotypic variability between varieties.

ब्रिक ब्रीक

The origin effect on variability of leaf functional traits was greater than effect of variety. The varieties with the best resistance to adverse conditions are mainly European varieties.

FUTURE WORK / REFERENCES

Extend phenotypic plasticity studies to other local and introduced varieties for comparison with

those covered in this

study.

Further research is needed to confirm the link between specific leaf functional traits and drought resistance in olive cultivars. Trials with gradients of water stress to

also see the GxE interaction.

By understanding the mechanisms of drought adaptation in olive cultivars, we can contribute to **Conducting a**

experimental farms in

contrasting climates

variety acclimatization trial on

Cross-i

Cross-referencing phenotypic results with genetic data to identify markers associated with drought tolerance.

Westerband, A.C., Funk, J.L., Barton, K.E., 2021. Intraspecific trait variation in plants: a renewed focus on its role in ecological

processes. Ann. Bot.

127 (4), 397–410.