GENOTYPE × ENVIRONMENT INTERACTION AND YIELD STABILITY OF UITM ADVANCED RICE LINES

¹Nor Farah Nadirah Ahmad Noruddin, ²Nur Sakinah Mohd Yusri, ¹Muhammad Nabil Haqiem Hisham, ¹Alif Ihsaan Mohd Akmal Shukri, ³Abdul Rahim Harun, ¹Nor'Aishah Hasan

1School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, 72000 Kuala Pilah, Negeri Sembilan, Malaysia 2 Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia 3 Pertama Padi (Malaysia) Sdn. Bhd., Lot 2973, Batu 8 3/4, Jalan Datuk Kumbar, Kampung Padang, Mukim Tajar, 06500 Langgar, Kedah

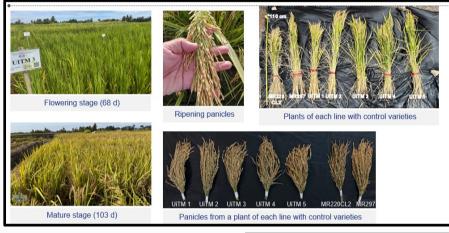
INTRODUCTION

OVERVIEW

Eleven rice genotypes (five UiTM mutant lines and six commercial varieties) were tested at 12 locations in Malaysia to evaluate yield, stability, and adaptability.

MAIN RESULTS:

- ➤ Significant effects (p < 0.001) of genotype, environment, and G×E on most traits.
- > Genotype differences strong for flowering time, maturity, filled spikelet's, and yield.
- > Environment mainly influenced plant height and spikelet number.
- > G×E interaction showed that some lines performed differently across sites.
- > UiTM mutant lines had stable yield and flowering, showing good adaptability.
- > High variation in sterile spikelet's and yield traits reflects environmental influence.
- Yield traits (filled spikelet's, 1000-seed weight) were strongly correlated key for selection.


MULTIVARIATE ANALYSIS:

- > PCA: Yield traits explained most variation.
- > Cluster: Two groups early, high-yielding lines vs. late, high-spikelet types.

METHODOLOGY

MACA PICA J. R. Sanglang The Table 19 And 19

RESULTS

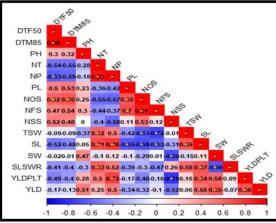


Figure 1: Pearson Correlation study

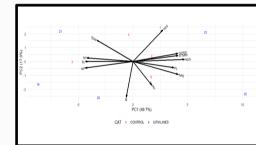


Figure 2: PCA biplot of the 10 genotypes evaluated

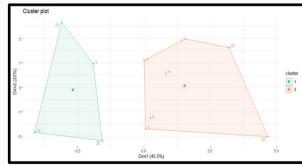


Figure 3: Cluster analysis results for all genotypes

CONCLUSION

UiTM mutant lines showed stable, high yields under diverse conditions; strong candidates for climate-resilient rice in Malaysia.

ACKNOWLEDGMENT

This study was funded by 600-RMC/MOSTI-SRF/5/3 (001/2024). $1^{NO}_{POVERTY}$

REFERENCES

- Department of Statistics Malaysia. (2024). Rice production and self-sufficiency ratio report. Official Statistical Release.
- Dorairaj, D., & Govender, P. (2023). Challenges in rice cultivation and sustainability in Malaysia. Malaysian Journal of Agronomy, 5(1), 12–20.
- Fadhilah, A., Ibrahim, R., & Zulkifli, H. (2024). Climate change and pest outbreaks in tropical rice systems. Asia-Pacific Journal of Crop Science, 11(2), 95–107.
- Nguyen, T. T., Bui, H. T., & Tran, Q. H. (2022). Genotype × environment interaction and trait stability in rice under climate stress. Rice Science, 29(1), 45–56.

 Oliveira, A. C. B., Silva, M. A. D., & de Castro, A. P. (2019). Multivariate analysis for rice genotype selection under tropical stress. Crop Breeding and Applied Biotechnology, 19(3), 234–242. https://doi.org/10.1590/1984-70332019v19n3a35
- Purchase, J. L., Hatting, H., & van Deventer, C. S. (2000). Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. Euphytica, 112, 239–246. https://doi.org/10.1023/A:1003768603332
 Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2022). Projected global yield losses in staple crops due to combined stress factors. Nature Food, 3(5), 332–340. https://doi.org/10.1038/s43016-022-
- 00480-1
 Salihi, A., Razaq, M., & Noor, Z. (2024). Abiotic stress challenges in rice and adaptation strategies. Plant Stress, 7, 100125. https://doi.org/10.1016/j.stress.2024.10012