The 3rd International Online Conference on Agriculture

22-24 October 2025 | Online

Development of an Automatic Tube well Discharge Measuring Instrument for Successful Aquifer Management

Muhammad Kamran Rao, Muhammad Fahad, Asif Nawaz, Muhammad Waleed, Muhammad Azhar Inam, Department of Agricultural Engineer Bahaudin Zakariya University Multan Pakistan Email: waleedmehtab@gmail.com, azharinam@bzu.edu.pk, raokamranengr@gmail.com,

engrfaraz.h@gmail.com, cadetasifnawaz@gmail.com

INTRODUCTION

- Groundwater supplies over 60% of irrigation and 90% of drinking water in Pakistan
- Pakistan has 1.2 million tube wells, most operating without discharge monitoring.
- Uncontrolled tube well extraction causes aquifer depletion up to 1–1.5 meters per year Over-pumping, 20–30% irrigation water loss, and declining water tables in many regions.
- Current manual methods are inaccurate, labor-intensive, and non-scalable. A low-cost, automatic, and locally designed device is needed for real-time data collection and groundwater regulation.

Figure 1: Conventional Methods of Discharge Measurements

AIM

 To develop and test an automatic tube well discharge monitoring system that provides real-time data for optimizing groundwater extraction and recharge management in Pakistan.

METHOD

- Adopted the V-model approach, dividing the system into sensing, processing, and communication modules for independent testing and reliable integration.
- Utilized JSN-SR04T ultrasonic sensor (±3 mm accuracy) and ESP32 microcontroller for real-time monitoring.
- Integrated a solar-powered system using 18650 Li-ion battery and TP4056 controller for off-grid operation.
- Implemented FreeRTOS-based firmware for multitasking (sensor polling and data transmission).
- Designed a modified Manning's equation algorithm with temperature compensation for accurate discharge measurement.

$$Q = \frac{1}{n} A R^{2/3} S^{1/2}$$

- Performed laboratory tests (0.5–5 L/s) under ISO 3455 standards and field trials on 15 tube wells.
- Evaluated performance on accuracy (±5%), power autonomy, data reliability, and user satisfaction.

Figure 2: Device and Observation using the Device

RESULTS & DISCUSSION

- Achieved ±3.8% average error (R² = 0.998) and up to ±1.8% accuracy in 1–5 L/s range.
- Tested on around 50 tube wells for 30 days, showing 96.3% accuracy and 92% LoRa data transmission success.
- Solar-powered system ran 10 days per charge; cost 70% lower than commercial units.
- Stable under pump shocks, sediment, and power issues; slight accuracy drop below 0.5 L/s or in turbid water.

Table 1: Manual and Device Values Comparison with Errors

Manual Flow (L/s)	Measured IOT Flow (L/s)	Error (%)
1.32	1.36	-4.0
1.19	1.21	-2
1.12	1.15	-3
1.24	1.22	2
2.3	2.6	-3

Table 2: Sensor Calibrations

Sensor Type	Voltage Output (V)		Calibration Error (±)
Ultrasonic	1.2	3.5	0.1 L/sec
Hall Effect	2.4	6.8	0.15 L/sec

Table 3: Troubleshooting Common Issues

Issue	Possible Cause	Solution
No data	Loose WiFi/LoRa	Check Antenna and
Transmission	Connection	Reset module
nconsistent	Sensor Misalignment	Re-align and
Readings		Recalibrate sensor

CONCLUSION

- Achieved **±1.8%** accuracy and **96.3%** consistency in real-time tube well discharge monitoring.
- Operated 10 days per charge with 30% lower cost, ensuring sustainable groundwater management.

REFERENCES

- 1. Waleed, M., Inam, M. A., Albano, R., Samad, A., Farid, H. U., Shoaib, M., & Ali, M. U. (2025). Statistical model development for estimating soil hydraulic conductivity through on-site investigations. *Hydrology*, 12(3), 55. https://doi.org/10.3390/hydrology12030055
- 2. Halith, K., Prasath, T. M., Vasuki, R., Solomon, F. E., & Indumathi, R. (2024, December). Bore Safe: IoT-Powered Child Monitoring System for Tube Wells. In 2024 Third International Conference on Artificial Intelligence, Computational Electronics and Communication System (AICECS) (pp. 1-6). IEEE.