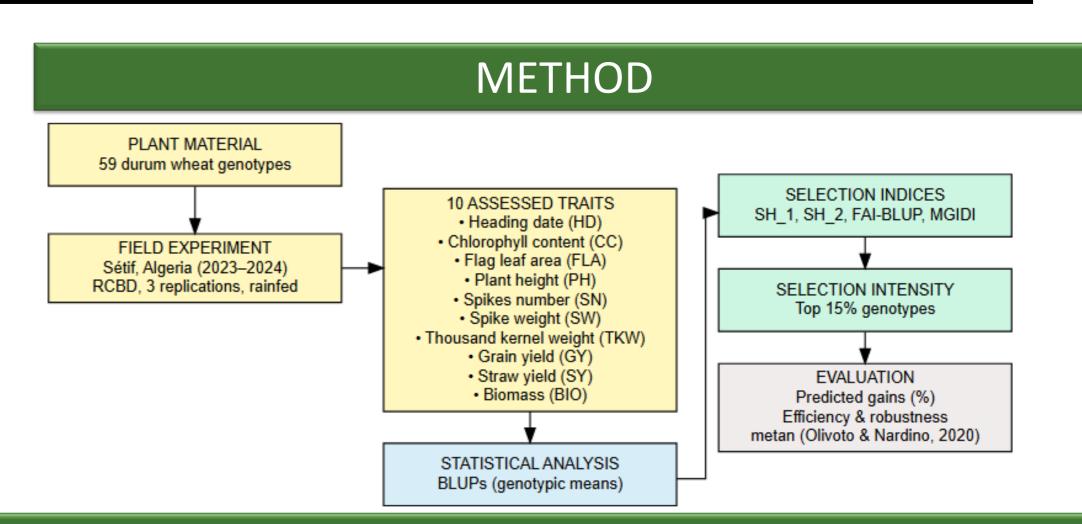
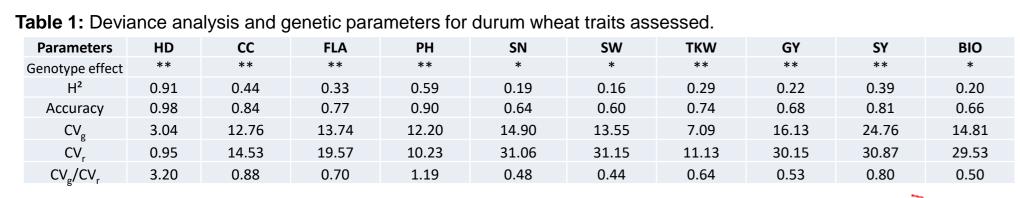
The 3rd International Online Conference on Agriculture

22-24 October 2025 | Online


Enhancing Multi-Trait Genetic Gains in Durum Wheat (Triticum durum Desf.) Using Ideotype-Based Selection Indices

Zine El Abidine FELLAHI¹, Abou-bakr RABTI², Abderrahmane HANNACHI³, Nasreddine LOUAHDI⁴


¹University of Bordj Bou Arreridj, Algeria. ²University of Souk Ahras, Algeria. ³National Agronomic Research Institute of Algeria. ⁴Field Crop Technical Institute, Algeria.

INTRODUCTION & AIM

Durum wheat (Triticum durum Desf.) is a staple cereal in the Mediterranean basin and North Africa, providing essential calories and proteins to millions. However, its productivity is constrained by erratic rainfall, high temperatures, and soil degradation—major challenges in semi-arid regions such as Algeria [1]. Traditional single-trait selection often fails to capture complex relationships among yield components, physiological traits, and adaptability. Moreover, classical multi-trait indices like Smith-Hazel (SH) are sensitive to multicollinearity, leading to unstable genetic gains [2,3]. Recent advances have introduced ideotype- and factor analysis-based indices, including the Multi-Trait Genotype-Ideotype Distance Index (MGIDI) and the Factor Analysis and Ideotype-Design Based BLUP (FAI-BLUP), which integrate correlated traits and target genotypes close to an "ideotype," enhancing selection accuracy and efficiency [4,5]. This study aims to evaluate the efficiency of MGIDI, FAI-BLUP, and SH indices in identifying superior durum wheat genotypes under semi-arid conditions.

RESULTS & DISCUSSION

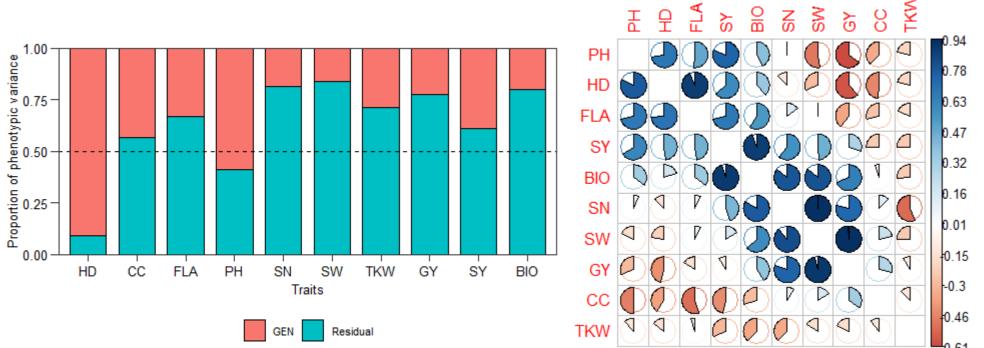


Figure 1: Variance components for the assessed traits in durum wheat.

Figure 2: Phenotypic (lower diagonal) and genotypic (upper diagonal) correlation between assessed traits in durum wheat.

Table 2: Eigenvalues, explained variance, factorial loadings after varimax rotation, and communalities obtained in the factor analysis.

Trait	FA1	FA2	FA3	Communality	
SN	-0.90	0.02	-0.24	0.86	
SW	-0.96	-0.13	-0.03	0.93	
GY	-0.89	-0.34	0.02	0.91	
BIO	-0.90	0.38	-0.09	0.97	
HD	-0.17	-0.88	0.12	0.82	
CC	-0.11	-0.57	-0.41	0.50	
FLA	-0.10	0.76	0.04	0.59	
PH	0.01	0.85	-0.10	0.73	
SY	-0.63	0.68	-0.12	0.87	
TKW	0.14	-0.11	0.92	0.88	
Eigenvalues	3.97	3.08	1.02		
Variance (%)	39.8	30.8	10.2		
Cum. variance (%)	39.8	70.5	80.8		

Bold values indicate the variables grouped within each factor.

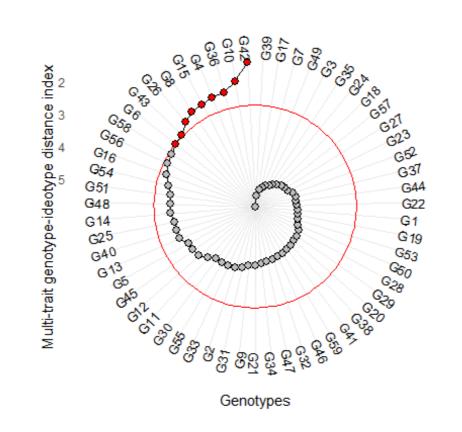


Figure 3: Genotypes ranking based on the MGIDI index.

Nonselected
Selected

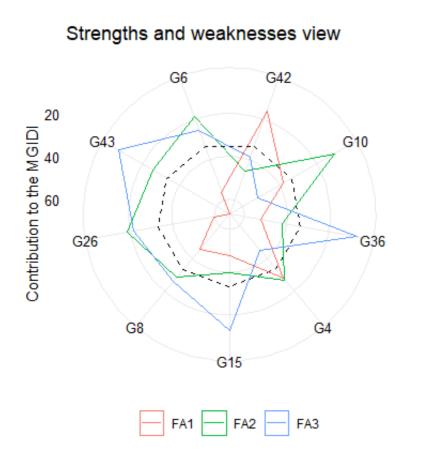
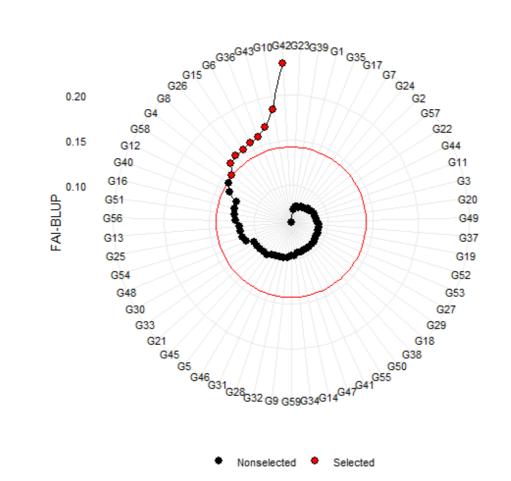
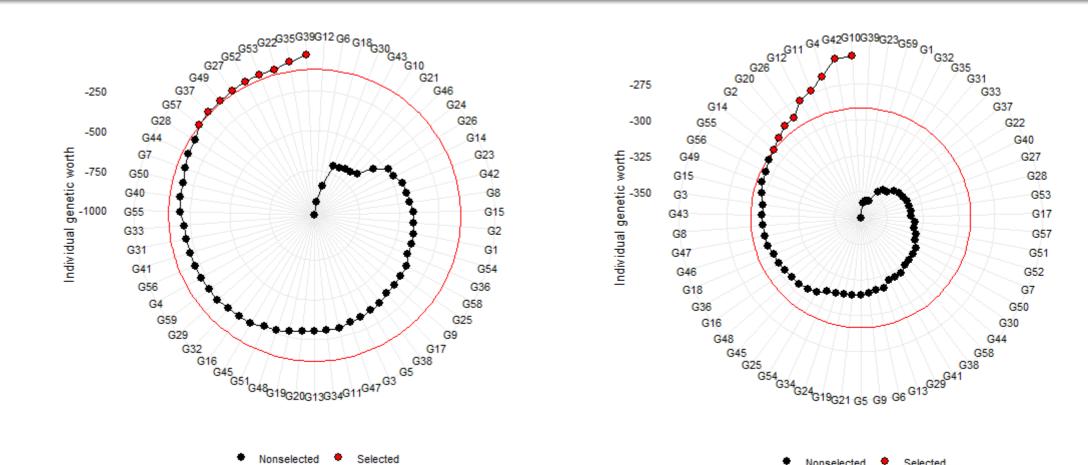




Figure 4: Strengths and weaknesses view of the selected genotypes identified by MGIDI index.

Figure 5: Genotypes ranking based on the FAI-BLUP index.

Figure 6: Genotypes ranking based on the SH_1 index.

Table 3: Coincidence index and shared genotypes for each pair of indexes evaluated.

Index 1	Index 2	Coincidence	Shared genotypes				
MGIDI	FAI-BLUP	100	G42,G10,G36,G4,G15,G8,G26,G43,G6				
MGIDI	SH_1	-17.65	None				
MGIDI	SH_2	34.67	G42,G10,G4,G26				
FAI-BLUP	SH_1	-17.65	None				
FAI-BLUP	SH_2	5.88	G42,G10,G26,G4				
SH_1	SH_2	76.47	None				

Nonselected
Selected

SH_1

Figure 7: Genotypes ranking based on the SH_2 index.

FAI-BLUP

MGIDI

Figure 8: Number of common genotypes between the selection indexes based on coincidence index.

Table 4: Predicted genetic gains for the indexes MGIDI, FAI-BLUP, SH 1 and SH 2.

Factor	Trait	Goal	Genetic value	MGIDI	FAI_BLUP	SH_1	SH_2
FA1	SN	Increase	350.9±4.35	3.97	3.97	-3.18	5.54
FA1	SW	Increase	60.35±0.64	3.48	3.48	-2.02	3.60
FA1	GY	Increase	34.92±0.5	5.49	5.49	-2.87	5.72
FA1	BIO [†]	Increase	118.53±1.5	5.64	5.64	-4.90	NA
FA2	HD	Decrease	127.49±0.5	-0.01	-0.01	-0.63	-1.15
FA2	CC	Increase	35.78±0.5	-5.12	-5.12	1.62	1.03
FA2	FLA	Increase	20.15±0.28	3.73	3.73	-1.94	1.94
FA2	PH	Increase	89.96±1.29	3.19	3.19	-4.92	2.03
FA2	SY	Increase	57.95±1.52	15.10	15.10	-16.60	13.70
FA3	TKW	Increase	33.68±0.23	0.81	0.81	-0.53	-1.65
Total (Increase)			36.29	36.29	-35.34	31.91	
Total (Decrease)			-0.01	-0.01	-0.63	-1.15	

CONCLUSION

Modern indices MGIDI and FAI-BLUP promoted substantial gains in key productivityrelated traits, and substantially outperformed SH_2 and especially SH_1, which was negatively affected by multicollinearity. Genotypes G42, G10, G26, and G4 were consistently selected across MGIDI, FAI-BLUP, and SH_2, confirming their superior multi-trait performance and breeding potential. Crosses involving these genotypes are expected to increase the frequency of favorable alleles in the resulting progenies while maximizing genetic variability and heterosis.

REFERENCES

- [1] Grosse-Heilmann, M., Cristiano, E., Deidda, R., & Viola, F. (2024). Durum wheat productivity today and tomorrow: A review of influencing factors and climate change effects. Resour. Environ. Sustain., 17, 100170.
- [2] Smith, H.F. (1936). A discriminant function for plant selection. Ann. Eugen 7, 240–250.
- [3] Hazel, L.N. (1943). The genetic basis for constructing selection indexes. Genetics 8, 476–490.
- [4] Rocha, J.R. do A.S. de C., Machado, J.C., & Carneiro, P.C.S. (2018). Multitrait index based on factor analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy, 10(1), 52–60. [5] Olivoto, T., & Nardino, M. (2020). MGIDI: toward an effective multivariate selection in biological experiments. Bioinformatics, 37(10), 1383–1389.