IOCAG 2025 Conference

The 3rd International Online Conference on Agriculture

22-24 October 2025 | Online

Formulation and Evaluation of Biodegradable Edible Coating from *Pleurotus ostreatus* Polysaccharides Integrated with Green-Synthesized Silver Nanoparticles for **Postharvest Preservation**

Sumaiya Hassan 1*, Saima Fariha 1, Suraiya Hassan Richi 2, Sumaiya Jalal 3

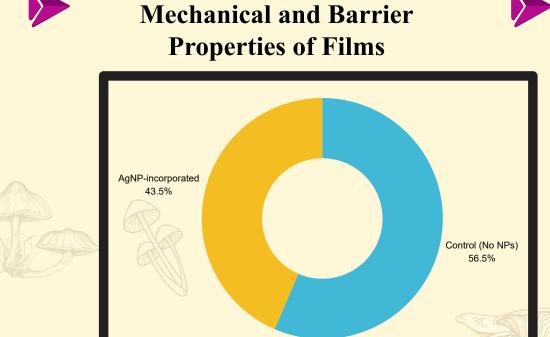
1 Department of Applied Nutrition and Food Technology, Islamic University, Kushtia 7003, Bangladesh 2 Department of Biotechnology and Genetic Engineering, Khulna University, Khulna 9208, Bangladesh 3 North Western University, Khulna 9100, Bangladesh

INTRODUCTION & AIM

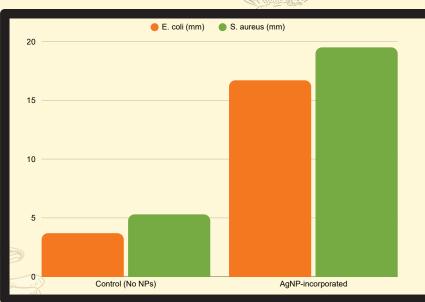
Background

- Postharvest spoilage of fruits and vegetables leads to 30–50% losses globally due to moisture loss, microbial decay, and poor packaging [1,2].
- Edible coatings made from natural biopolymers are gaining attention as eco-friendly alternatives to synthetic plastics [3].
- Mushroom polysaccharides (from *Pleurotus ostreatus*) exhibit excellent film-forming, antioxidant, and antimicrobial properties, making them ideal candidates for coating development [4,5,6].

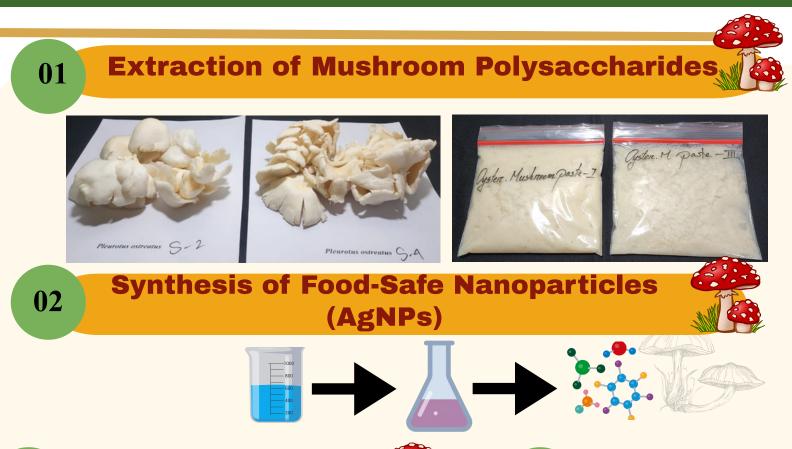
Innovation

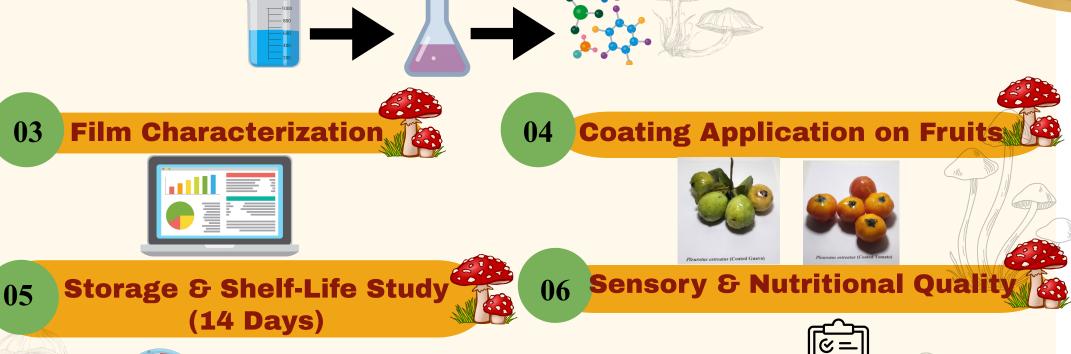

- Integration of food-safe silver nanoparticles (AgNPs) into mushroom-based matrices enhances mechanical strength, water barrier properties, and antibacterial activity.
- Applying these coatings on crops like tomato and guava can significantly extend shelflife and preserve nutritional and sensory quality compared to uncoated or plastic-wrapped samples.

Aim of the Study


This study aims to develop an eco-friendly, mushroom-based edible coating enriched with food-safe nanoparticles to extend the postharvest shelf-life of fruits and vegetables by providing a biodegradable, antimicrobial, and nutrient-preserving alternative to synthetic plastic packaging.

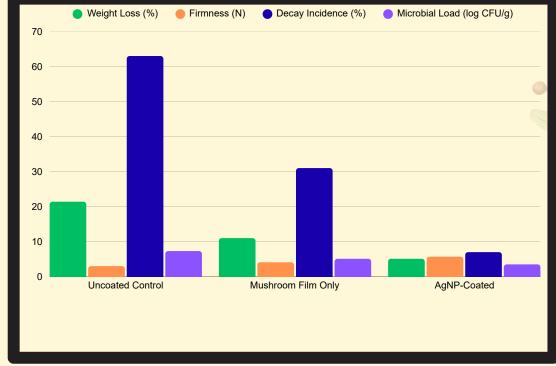
RESULTS

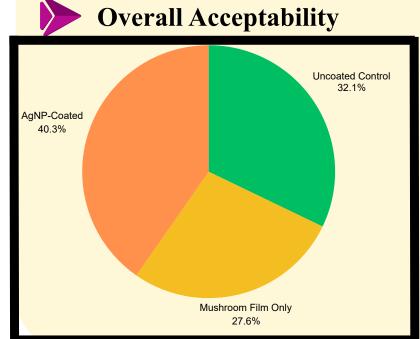

- The mushroom-based polysaccharide extract produced a clear, viscous film-forming solution. Coatings dried uniformly into smooth, flexible films.
- Pure polysaccharide films were transparent but brittle, whereas nanoparticleincorporated films were more opaque and elastic.
- Silver nanoparticles (AgNPs) were successfully synthesized and incorporated into the mushroom-based matrix. UV-Vis showed a ~420 nm peak, XRD confirmed crystalline AgNPs, and SEM revealed uniform nanoparticle dispersion without agglomeration.



Antimicrobial Activity (Zones of inhibition in mm)

METHODOLOGY





Shelf-Life Evaluation on Day 14 (Tomatoes & Guavas)

Comparison with Conventional Packaging

Packaging Type	Decay Incidence (%)	Microbial Load (log CFU/g)	Sensory Score
Polyethylene Wrapped	23	6.6	4.6
Mushroom + AgNP Film	7	1.6	8.2

CONCLUSION

Mushroom (Pleurotus ostreatus)-based edible coatings incorporated with silver nanoparticles (AgNPs) effectively enhanced mechanical strength, barrier, and antimicrobial properties. When applied to tomatoes and guava, the coating significantly reduced weight loss, decay, and microbial load while preserving firmness, nutrition, and sensory quality. Compared to polyethylene packaging, the films showed superior preservation and biodegradability, demonstrating strong potential as a sustainable, food-safe alternative for postharvest shelf-life extension.

REFERENCES

- [1] Firdous, N. (2021). Post-harvest losses in different fresh produces and vegetables in Pakistan with particular focus on
- tomatoes. Journal of Horticulture and Postharvest Research, 4(1), 71-86. [2] Yahaya, S. M., & Mardiyya, A. Y. (2019). Review of post-harvest losses of fruits and vegetables. Biomed. J. Sci. Tech. Res, 13(4), 10192-10200.
- [3] Sun, Y., He, H., Wang, Q., Yang, X., Jiang, S., & Wang, D. (2022). A review of development and utilization for edible fungal polysaccharides: Extraction, chemical characteristics, and bioactivities. Polymers, 14(20), 4454.
- [4] Hernández-García, E., Chiralt, A., & González-Martínez, C. (2025). Antioxidant and antimicrobial films for sustainable food packaging based on mushroom waste biomass. Food Hydrocolloids, 111836.
- [5] Chun, S., Gopal, J., & Muthu, M. (2021). Antioxidant activity of mushroom extracts/polysaccharides—Their antiviral properties and plausible antiCOVID-19 properties. Antioxidants, 10(12), 1899.
- [6] Barbosa, J. R., Freitas, M. M. S., Oliveira, L. C., Martins, L. H. S., Almada-Vilhena, A. O., Oliveira, R. M., ... & Junior, R. N. C. (2020). Obtaining extracts rich in antioxidant polysaccharides from the edible mushroom Pleurotus ostreatus using binary system with hot water and supercritical CO2. Food Chemistry, 330, 127173.