IOCAG

The 3rd International Online Conference on Agriculture

22-24 October 2025 | Online

Establishing a Baseline Susceptibility of *Eldana saccharina* to Coragen® SC (Chlorantraniliprole) for Resistance Monitoring

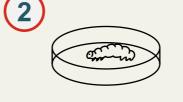
'AKWAZULU-NATALI

Kwanele Msele,1,2*, Caswell Munyai², Ewald Albertse,1, Lawrence Malinga^{1,2}

¹ South African Sugarcane Research Institute, Private Bag X02, Mount Edgecombe 4300, South Africa

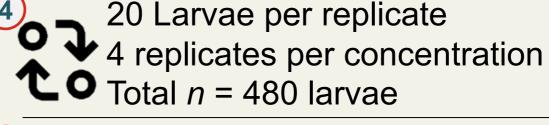
² School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa

*Corresponding author: kpmsele@live.com


Background

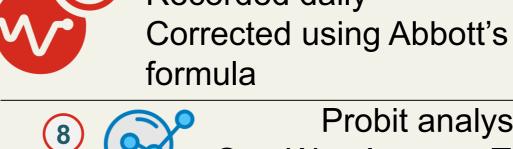
- Sugarcane is a vital crop for South Africa's economy and rural employment.
- The stalk borer *Eldana saccharina* is a major indigenous pest, causing significant yield losses through larval boring^{1,3}.
- Over-reliance on chemical insecticides has increased the risk of pest resistance².
- Chlorantraniliprole (Coragen® SC) is a modern insecticide with a novel mode of action (ryanodine receptor modulator), but resistance has been documented in other lepidopteran pests^{2,3}.
- Aim: To determine the baseline susceptibility of two-day-old E. saccharina larvae to Coragen® SC under controlled laboratory conditions.

Methods

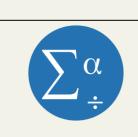

E. Saccharina larvae (2-day-old) reared at SASRI Insect Rearing Unit

Expose individually to artificial diet

Six concentration of Coragen®



□ O Total *n* = 480 larvae 6 Larval Mortality Recorded daily



arval Weight Measured after 7 days for sublethal effects

70% RH

Probit analysis for LC values One Way Anova + Tukey's test for mortality and weight (IBM SPSS v27)

(5)

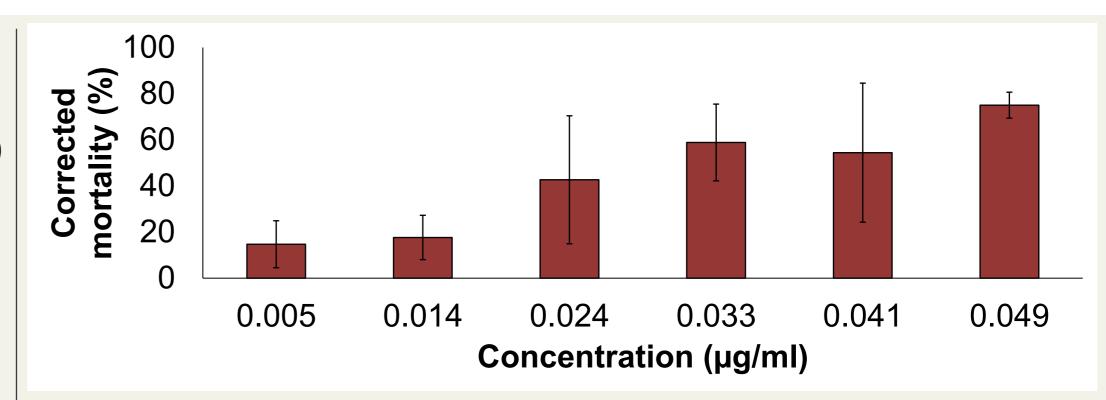
Results

Larval Mortality was Dose-Dependent

Mortality increased significantly with concentration (F=8.413, p<0.001). Corrected mortality ranged from 15% at 0.005 µg/ml to 79% at 0.049 μg/ml.

The calculated LC_{50} was 0.0298 µg/ml (95% CI: 0.0252 - 0.0353).

Table 1: Lethal concentrations and 95% confidence intervals on larval mortality against Coragen® SC insecticide.


n	LC ₅₀ (95%CI) (μg/ml)	LC ₉₅ (95%CI) (μg/ml)
480	0.0298 (0.0252 -0.0353)	0.292 (0.161 - 0.530)

Significant Growth Inhibition Observed

Larval weight decreased dramatically with increasing concentration (F=1976.15, p<0.001).

Control larvae weighed 8.0 ± 0.2 mg, while larvae at the highest concentrations averaged only 0.2 ± 0.1 mg.

Growth inhibition reached over 97% at 0.041 µg/ml, indicating potent sublethal effects.

Figure 1: Percentage of corrected mortality of two-day-old *E.* saccharina larvae across increasing concentrations of Coragen® SC insecticide

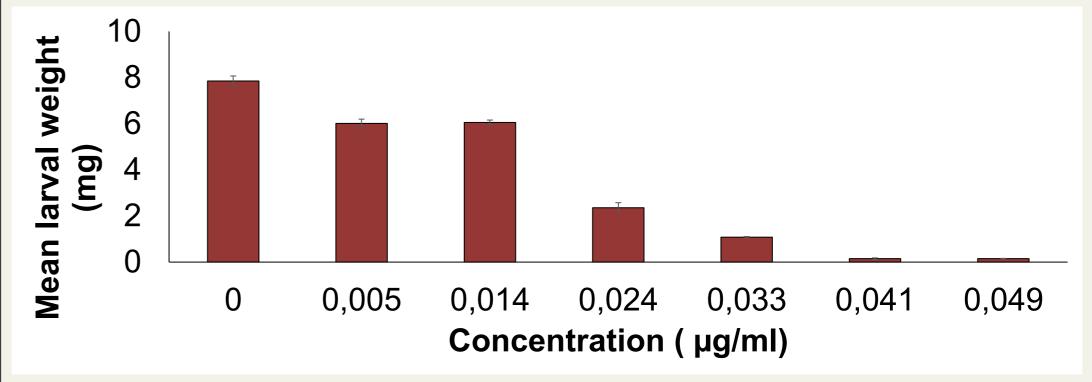


Figure 2: Mean larval weight of two-day-old *E. saccharina* across increasing concentrations of Coragen® SC insecticide

Discussion

- Coragen® SC effective against E. saccharina.
- Mortality + weight reduction confirm baseline susceptibility.
- Findings align with studies on S. frugiperda, S. cosmioides, P. xylostella².
- Sublethal effects (growth inhibition) critical in reducing pest population growth.
- Supports use of Coragen[®] SC as alternative to pyrethroids, where resistance is common ^{2,3}.
- BUT: Overreliance on single mode of action → resistance risk.
- Integration with IPM strategies (biological control, crop management) is essential 1,3.

Conclusion

First baseline susceptibility data for *E. saccharina* to Coragen® SC in South Africa.

 $LC_{50} = 0.0298 \,\mu g/ml$ is a benchmark for resistance monitoring.

Findings support development of IRAC-aligned monitoring protocols.

Sustained management requires IPM + resistance monitoring.

References

- Goebel, R.; Way, M.J. Establishment of baseline data for insecticide susceptibility of *Eldana saccharina* Walker (Lepidoptera: Pyralidae) populations in KwaZulu-Natal sugarcane. Proc. S. Afr. Sugar Technol. Assoc. 2009, 82, 543–552.
- 2. Lahm, G.P.; Cordova, D.; Barry, J.D. New and selective ryanodine receptor activators for insect control. Bioorg. Med. Chem. 2009, 17, 4127–4133.
- 3. Leslie, G.W. Integrated pest management of Eldana saccharina Walker in sugarcane in South Africa. Proc. S. Afr. Sugar Technol. Assoc. 2004, 78, 304–315.
- 4. Way, M.J.; Keeping, M.G.; Govender, P. Susceptibility of *Eldana saccharina* Walker (Lepidoptera: Pyralidae) to insecticides with different modes of action. Proc. S. Afr. Sugar Technol. Assoc. 2010, 83, 497-507.